Full Text:   <252>

Summary:  <16>

Suppl. Mater.: 

CLC number: 

On-line Access: 2024-07-24

Received: 2023-05-09

Revision Accepted: 2023-12-05

Crosschecked: 2024-07-24

Cited: 0

Clicked: 440

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei FENG

https://orcid.org/0000-0002-9845-999X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2024 Vol.25 No.7 P.573-585

http://doi.org/10.1631/jzus.A2300251


Time-synchronous-averaging-spectrum based on super-resolution analysis and application in bearing fault signal identification


Author(s):  Zengle REN, Yuan WANG, Huiyue TANG, Xin'an CHEN, Wei FENG

Affiliation(s):  Guangdong Provincial Key Laboratory of Construction Robotics and Intelligent Construction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; more

Corresponding email(s):   wei.feng@siat.ac.cn

Key Words:  Time-synchronous-averaging (TSA), Spectrum, Quasiperiodic signal processing (QSP), Super-resolution analysis, Bearing fault detection


Zengle REN, Yuan WANG, Huiyue TANG, Xin'an CHEN, Wei FENG. Time-synchronous-averaging-spectrum based on super-resolution analysis and application in bearing fault signal identification[J]. Journal of Zhejiang University Science A, 2024, 25(7): 573-585.

@article{title="Time-synchronous-averaging-spectrum based on super-resolution analysis and application in bearing fault signal identification",
author="Zengle REN, Yuan WANG, Huiyue TANG, Xin'an CHEN, Wei FENG",
journal="Journal of Zhejiang University Science A",
volume="25",
number="7",
pages="573-585",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2300251"
}

%0 Journal Article
%T Time-synchronous-averaging-spectrum based on super-resolution analysis and application in bearing fault signal identification
%A Zengle REN
%A Yuan WANG
%A Huiyue TANG
%A Xin'an CHEN
%A Wei FENG
%J Journal of Zhejiang University SCIENCE A
%V 25
%N 7
%P 573-585
%@ 1673-565X
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2300251

TY - JOUR
T1 - Time-synchronous-averaging-spectrum based on super-resolution analysis and application in bearing fault signal identification
A1 - Zengle REN
A1 - Yuan WANG
A1 - Huiyue TANG
A1 - Xin'an CHEN
A1 - Wei FENG
J0 - Journal of Zhejiang University Science A
VL - 25
IS - 7
SP - 573
EP - 585
%@ 1673-565X
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2300251


Abstract: 
time-synchronous-averaging (TSA) is based on the idea of denoising by averaging, and it extracts the periodic components of a quasiperiodic signal and keeps the extracted waveform undistorted. This paper studies the mathematical properties of TSA, where three propositions are given to reveal the nature of TSA. This paper also proposes a TSA-spectrum based on super-resolution analysis and it decomposes a signal without using any base function. In contrast to discrete Fourier transform spectrum (DFT-spectrum), which is a spectrum in frequency domain, TSA-spectrum is a period-based spectrum, which can present more details of the cross effects between different periodic components of a quasiperiodic signal. Finally, a case study is carried out using bearing fault analysis to illustrate the performance of TSA-spectrum, where the rotation speed fluctuation of the shaft is estimated, which is about 0.12 ms difference. The extracted fault signals are presented and some insights are provided. We believe that this paper can provide new motivation for TSA-spectrum to be widely used in applications involving quasiperiodic signal processing (QSP).

基于超分辨率分析的同步平均频谱及其在轴承故障信号识别中的应用

作者:任增乐1,王源2,汤辉玥3,陈欣安4,冯伟1,5,6
机构:1广东省建筑机器人与智能施工重点实验室,中国科学院深圳先进技术研究院,中国深圳,518055;2深圳市埃伯瑞科技有限公司,中国深圳,518038;3国家超级计算深圳中心,中国深圳,518055;4北京交通大学,轨道交通控制与安全国家重点实验室,中国北京,100044;5中国科学院大学,中国北京,100190;6深圳理工大学,中国深圳,518107
目的:本文旨在介绍一种基于超分辨率分析的时间同步平均(TSA)谱技术,用于提升准周期信号处理中的故障特征提取能力,尤其是在低信噪比的环境。
创新点:1.提出一种新颖的TSA谱分析方法;该方法基于超分辨率分析,无需借助基函数即可实现信号的周期分解,为准周期信号处理提供一种新的分析视角,可增强信号特征的解析度和敏感度。2.通过案例研究证明,改进的TSA谱能够有效识别轴承故障信号中的微弱周期性变化,揭示传统频域分析难以捕捉的交叉效应细节,为提高机械设备故障诊断的准确性和可靠性提供新的理论和技术支持。
方法:1.探讨时间同步平均法的数学原理,通过提出三个核心命题,深刻揭示TSA技术的基本性质;这些命题为理解TSA如何有效降噪并保持周期成分不失真提供理论支撑;通过理论推导,进一步阐明TSA如何从准周期信号中提取周期性成分而不改变原始波形结构。2.创新性地引入基于超分辨率分析的TSA频谱方法,可不依赖任何基函数直接对信号进行分解(图2和3)。3.为验证上述方法的有效性,选取具有代表性的西储大学轴承测试数据集进行应用实验;通过分析振动信号(图7和8),展示TSA如何在存在噪声的条件下,通过调节操作周期参数,显著提升信号提取能力。
结论:1.成功构建了一种基于超分辨率分析的TSA频谱方法,为分析准周期信号提供了一种新颖视角。2.通过数学推导和理论证明,确立了TSA的三个关键性质,揭示了其在保持周期信号结构完整性的同时,有效降噪并提取周期成分的能力;这一创新技术在实际应用中,特别是在旋转机械如轴承的故障诊断上,展示了卓越的性能,有效识别了不同类型的故障信号,包括滚珠与内外圈接触点的撞击信号。3.通过与DFT谱的对比,展现了TSA在处理信号的长周期(低频)成分时的独特优势:TSA谱作为周期域的表示,能更细致地揭示准周期信号中不同周期成分间的交叉效应,进而比DFT谱在呈现信号周期性细节上更为全面。这一发现强调了TSA在分析具有复杂周期结构信号时的补充作用,特别是在低信噪比环境中,其在保持信号周期性完整的同时,显著提升了信号特征的提取精度,进而为信号处理领域提供了新的研究方向和工具。

关键词:时间同步平均;频谱;准周期信号处理;超分辨分析;轴承故障检测

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AhamedN, PandyaY, PareyA, 2014. Spur gear tooth root crack detection using time synchronous averaging under fluctuating speed. Measurement, 52:1-11.

[2]BommertA, SunXD, BischlB, et al., 2020. Benchmark for filter methods for feature selection in high-dimensional classification data. Computational Statistics & Data Analysis, 143:106839.

[3]Bravo-ImazI, ArdakaniHD, LiuZC, et al., 2017. Motor current signature analysis for gearbox condition monitoring under transient speeds using wavelet analysis and dual-level time synchronous averaging. Mechanical Systems and Signal Processing, 94:73-84.

[4]CameriniV, CoppotelliG, BendischS, et al., 2019. Impact of pulse time uncertainty on synchronous average: statistical analysis and relevance to rotating machinery diagnosis. Mechanical Systems and Signal Processing, 129:308-336.

[5]CWRU (Case Western Reserve University), 2019. Bearing Data Center: Seeded Fault Test Data. https://engineering.case.edu/bearingdatacenter

[6]ChaumonM, BishopDV, BuschNA, 2015. A practical guide to the selection of independent components of the electroencephalogram for artifact correction. Journal of Neuroscience Methods, 250:47-63.

[7]ChenJL, LiZP, PanJ, et al., 2016. Wavelet transform based on inner product in fault diagnosis of rotating machinery: a review. Mechanical Systems and Signal Processing, 70-71:1-35.

[8]ChenZG, ZhaiWM, WangKY, 2019. Vibration feature evolution of locomotive with tooth root crack propagation of gear transmission system. Mechanical Systems and Signal Processing, 115:29-44.

[9]CombetF, GelmanL, 2007. An automated methodology for performing time synchronous averaging of a gearbox signal without speed sensor. Mechanical Systems and Signal Processing, 21(6):2590-2606.

[10]de SmidtMR, 2010. Internal Vibration Monitoring of a Planetary Gearbox. MS Thesis, University of Pretoria, Pretoria, South Africa.

[11]DelvecchioS, BonfiglioP, PompoliF, 2018. Vibro-acoustic condition monitoring of internal combustion engines: a critical review of existing techniques. Mechanical Systems and Signal Processing, 99:661-683.

[12]FongS, HarmoucheJ, NarasimhanS, et al., 2020. Mean shift clustering-based analysis of nonstationary vibration signals for machinery diagnostics. IEEE Transactions on Instrumentation and Measurement, 69(7):4056-4066.

[13]GabrićD, AumilerD, VuletićM, et al., 2021. Thermal evaluation by infrared thermography measurement of osteotomies performed with Er:‍YAG laser, piezosurgery and surgical drill—an animal study. Materials, 14(11):3051.

[14]GaoWY, LiH, ZhongMH, et al., 2023. The separate clock drift matched filter to detect time synchronization attacks toward global navigation satellite systems. IEEE Transactions on Industrial Electronics, 70(6):6305-6315.

[15]GothwalH, KedawatS, KumarR, 2011. Cardiac arrhythmias detection in an ECG beat signal using fast Fourier transform and artificial neural network. Journal of Biomedical Science and Engineering, 4(4):289-296.

[16]GuptaV, ChopdaMD, PachoriRB, 2019. Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals. IEEE Sensors Journal, 19(6):2266-2274.

[17]HalimEB, ChoudhuryMAAS, ShahSL, et al., 2008. Time domain averaging across all scales: a novel method for detection of gearbox faults. Mechanical Systems and Signal Processing, 22(2):261-278.

[18]HongM, WangQ, SuZQ, et al., 2014. In situ health monitoring for bogie systems of CRH380 train on Beijing-Shanghai high-speed railway. Mechanical Systems and Signal Processing, 45(2):378-395.

[19]LeeJ, WuFJ, ZhaoWY, et al., 2014. Prognostics and health management design for rotary machinery systems–reviews, methodology and applications. Mechanical Systems and Signal Processing, 42(1-2):314-334.

[20]LiYF, LiangXH, LinJH, et al., 2018. Train axle bearing fault detection using a feature selection scheme based multi-scale morphological filter. Mechanical Systems and Signal Processing, 101:435-448.

[21]LinCC, HuWC, ChenCM, et al., 2008. Heart rate detection in highly noisy handgrip electrocardiogram. 2008 Computers in Cardiology, IEEE, p.477-480.

[22]LinT, ChenG, OuyangWL, et al., 2018. Hyper-spherical distance discrimination: a novel data description method for aero-engine rolling bearing fault detection. Mechanical Systems and Signal Processing, 109:330-351.

[23]MaJM, TaoR, 2021. Research progress of the sampling theorem associated with the fractional Fourier transform. Journal of Beijing Institute of Technology, 30(3):195-204.

[24]MaM, SunC, ZhangC, et al., 2019. Subspace-based MVE for performance degradation assessment of aero-engine bearings with multimodal features. Mechanical Systems and Signal Processing, 124:298-312.

[25]MannanMMN, KamranMA, KangS, et al., 2018. Effect of EOG signal filtering on the removal of ocular artifacts and EEG-based brain–computer interface: a comprehensive study. Complexity, 2018(1):4853741.

[26]MartensP, VerbruggeFH, BertrandPB, et al., 2018. Effect of cardiac resynchronization therapy on exercise-induced pulmonary hypertension and right ventricular-arterial coupling: a cardiopulmonary exercise testing imaging evaluation. Circulation: Cardiovascular Imaging, 11(9):e007813.

[27]McFaddenPD, 1987. A revised model for the extraction of periodic waveforms by time domain averaging. Mechanical Systems and Signal Processing, 1(1):83-95.

[28]McFaddenPD, 1989. Interpolation techniques for time domain averaging of gear vibration. Mechanical Systems and Signal Processing, 3(1):87-97.

[29]McFaddenPD, ToozhyMM, 2000. Application of synchronous averaging to vibration monitoring of rolling element bearings. Mechanical Systems and Signal Processing, 14(6):891-906.

[30]MishraC, SamantarayAK, ChakrabortyG, 2016. Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet de-noised estimate. Mechanical Systems and Signal Processing, 72-73:206-222.

[31]NagwanshiN, PotnisA, 2023. Detection of Epilepsy patients using coot optimization based feed forward multilayer neural network. Journal of Experimental & Theoretical Artificial Intelligence, 1-26.

[32]PengDD, LiuZL, WangH, et al., 2019. A novel deeper one-dimensional CNN with residual learning for fault diagnosis of wheelset bearings in high-speed trains. IEEE Access, 7:10278-10293.

[33]PitarresiG, CappelloR, CatalanottiG, 2020. Quantitative thermoelastic stress analysis by means of low-cost setups. Optics and Lasers in Engineering, 134:106158.

[34]QiaoW, LuDG, 2015. A survey on wind turbine condition monitoring and fault diagnosis—part II: signals and signal processing methods. IEEE Transactions on Industrial Electronics, 62(10):6546-6557.

[35]RahmanAGA, ChaoOZ, IsmailZ, 2011. Effectiveness of impact-synchronous time averaging in determination of dynamic characteristics of a rotor dynamic system. Measurement, 44(1):34-45.

[36]RandallRB, AntoniJ, 2011. Rolling element bearing diagnostics—a tutorial. Mechanical Systems and Signal Processing, 25(2):485-520.

[37]RothM, HendebyG, FritscheC, et al., 2017. The ensemble Kalman filter: a signal processing perspective. EURASIP Journal on Advances in Signal Processing, 2017(1):56.

[38]RoySK, MohantyAR, KumarCS, 2016. Fault detection in a multistage gearbox by time synchronous averaging of the instantaneous angular speed. Journal of Vibration and Control, 22(2):468-480.

[39]SalamehJP, CauetS, EtienE, et al., 2018. Gearbox condition monitoring in wind turbines: a review. Mechanical Systems and Signal Processing, 111:251-264.

[40]SchmidtS, ZimrozR, HeynsPS, 2021. Enhancing gearbox vibration signals under time-varying operating conditions by combining a whitening procedure and a synchronous processing method. Mechanical Systems and Signal Processing, 156:107668.

[41]SimJ, MinJH, KimD, et al., 2022. A python based tutorial on prognostics and health management using vibration signal: signal processing, feature extraction and feature selection. Journal of Mechanical Science and Technology, 36(8):4083-4097.

[42]SmithWA, RandallRB, 2015. Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study. Mechanical Systems and Signal Processing, 64-65:100-131.

[43]SugavanamS, KopaeMK, PengJS, et al., 2019. Analysis of laser radiation using the nonlinear Fourier transform. Nature Communications, 10(1):5663.

[44]SunRB, YangZB, ChenXF, et al., 2018. Gear fault diagnosis based on the structured sparsity time-frequency analysis. Mechanical Systems and Signal Processing, 102:346-363.

[45]SyedSH, MuralidharanV, 2022. Feature extraction using Discrete Wavelet Transform for fault classification of planetary gearbox‍–‍a comparative study. Applied Acoustics, 188:108572.

[46]TalhaouiH, MenacerA, KessalA, et al., 2014. Fast Fourier and discrete wavelet transforms applied to sensorless vector control induction motor for rotor bar faults diagnosis. ISA Transactions, 53(5):1639-1649.

[47]TanWZ, WuJM, NiD, et al., 2021. Dynamic modeling and simulation of double-planetary gearbox based on bond graph. Mathematical Problems in Engineering, 2021:3964808.

[48]TengW, DingX, ZhangYY, et al., 2017. Application of cyclic coherence function to bearing fault detection in a wind turbine generator under electromagnetic vibration. Mechanical Systems and Signal Processing, 87:279-293.

[49]ThakorNV, TongS, 2004. Advances in quantitative electroencephalogram analysis methods. Annual Review of Biomedical Engineering, 6:453-495.

[50]ThibaultÉ, DésiletsFL, PoulinB, et al., 2023. Comparison of signal processing methods considering their optimal parameters using synthetic signals in a heat exchanger network simulation. Computers & Chemical Engineering, 178:108380.

[51]TianCW, ZhengMH, ZuoWM, et al., 2023. Multi-stage image denoising with the wavelet transform. Pattern Recognition, 134:109050.

[52]TouretT, ChangenetC, VilleF, et al., 2018. On the use of temperature for online condition monitoring of geared systems‍–‍a review. Mechanical Systems and Signal Processing, 101:197-210.

[53]WangD, TsuiKL, MiaoQ, 2018a. Prognostics and health management: a review of vibration based bearing and gear health indicators. IEEE Access, 6:665-676.

[54]WangD, ZhaoY, YiC, et al., 2018b. Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings. Mechanical Systems and Signal Processing, 101:292-308.

[55]WangTY, LiangM, LiJY, et al., 2014. Rolling element bearing fault diagnosis via fault characteristic order (FCO) analysis. Mechanical Systems and Signal Processing, 45(1):139-153.

[56]WangTY, HanQK, ChuFL, et al., 2019. Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: a review. Mechanical Systems and Signal Processing, 126:662-685.

[57]WangX, LiuCW, BiFR, et al., 2013. Fault diagnosis of diesel engine based on adaptive wavelet packets and EEMD-fractal dimension. Mechanical Systems and Signal Processing, 41(1-2):581-597.

[58]WangXY, LiYW, GaoHX, et al., 2023. A causal intervention scheme for semantic segmentation of quasi-periodic cardiovascular signals. IEEE Journal of Biomedical and Health Informatics, 27(7):3175-3186.

[59]YaoRH, JiangHK, LiXQ, et al., 2022. Bearing incipient fault feature extraction using adaptive period matching enhanced sparse representation. Mechanical Systems and Signal Processing, 166:108467.

[60]ZhangL, HuN, 2019. Time domain synchronous moving average and its application to gear fault detection. IEEE Access, 7:93035-93048.

[61]ZhangZZ, LiSM, WangJR, et al., 2019. General normalized sparse filtering: a novel unsupervised learning method for rotating machinery fault diagnosis. Mechanical Systems and Signal Processing, 124:596-612.

[62]ZhaoY, ZhaoH, AiJ, et al., 2022. Robust data-driven fault detection: an application to aircraft air data sensors. International Journal of Aerospace Engineering, 2022(1):2918458.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE