Full Text:   <3361>

CLC number: Q71

On-line Access: 

Received: 2008-07-15

Revision Accepted: 2008-10-17

Crosschecked: 2009-02-27

Cited: 2

Clicked: 5574

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2009 Vol.10 No.4 P.273-279


Study on swelling model and thermodynamic structure of native konjac glucomannan

Author(s):  Long LI, Hui RUAN, Liu-liu MA, Wei WANG, Ping ZHOU, Guo-qing HE

Affiliation(s):  Department of Food Science and Nutrition, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310029, China; more

Corresponding email(s):   gqhe@zju.edu.cn

Key Words:  Swelling model, Thermodynamic structure, Konjac glucomannan (KGM), Higher structure

Long LI, Hui RUAN, Liu-liu MA, Wei WANG, Ping ZHOU, Guo-qing HE. Study on swelling model and thermodynamic structure of native konjac glucomannan[J]. Journal of Zhejiang University Science B, 2009, 10(4): 273-279.

@article{title="Study on swelling model and thermodynamic structure of native konjac glucomannan",
author="Long LI, Hui RUAN, Liu-liu MA, Wei WANG, Ping ZHOU, Guo-qing HE",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Study on swelling model and thermodynamic structure of native konjac glucomannan
%A Long LI
%A Liu-liu MA
%A Ping ZHOU
%A Guo-qing HE
%J Journal of Zhejiang University SCIENCE B
%V 10
%N 4
%P 273-279
%@ 1673-1581
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0820221

T1 - Study on swelling model and thermodynamic structure of native konjac glucomannan
A1 - Long LI
A1 - Hui RUAN
A1 - Liu-liu MA
A1 - Wei WANG
A1 - Ping ZHOU
A1 - Guo-qing HE
J0 - Journal of Zhejiang University Science B
VL - 10
IS - 4
SP - 273
EP - 279
%@ 1673-1581
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0820221

We investigated the higher structure of konjac glucomannan (KGM) in the amorphous state and solution using a laser particle size analyzer and a water activity meter. The results show that the thermodynamic structures of native KGM were primarily composed of the lamella structure units, which involve both granular crystalline and amorphous regions, and that the connection zones of such units contained both loose and tight aggregation regions. The value of surface tension (σ) of native KGM, resting with the density of its hydroxyl groups’ self-association, was an important parameter to analyze the higher structures of native KGM in the thermodynamic swelling model of native KGM.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Hatakeyama, H., Hatakeyama, T., 1998. Interaction between water and hydrophilic polymers. Thermochimica Acta, 308(1-2):3-22.

[2] Hatakeyama, T., Nakamura, K., Hatakeyama, H., 2000. Vaporization of bound water associated with cellulose fibres. Thermochimica Acta, 352-353(3):233-239

[3] Kato, K., Matsuda, K., 1969. Studies on the chemical structure of konjacmannan. Part Ι: Isolation and characterization of oligosaccharides from the partial acid hydrolyzate of the mannan. J. Agric. Biol. Chem., 33:1446-1453.

[4] Katsuraya, K., Okuyama, K., Hatanaka, K., Oshima, R., Sato, T., Matsuzaki, K., 2003. Constitution of konjac glucomannan: chemical analysis and 13C NMR spectroscopy. Carbohydrate Polymers, 53(2):183-189.

[5] Kennedy, J.F., Phillips, G.O., Williams, P.A. (Eds.), 1989. Cellulose. Structural and Functional Aspects. Ellis Horwood Limited, Chichester, UK, p.291-298.

[6] Koroskenyi, B., McCarthy, S.P., 2001. Synthesis of acetylated konjac glucomannan and effect of degree of acetylation on water absorbency. Biomacromolecules, 2(3):824-826.

[7] Larini, L., Leporini, D., 2006. Free-energy effects in single-molecule polymer crystals. Journal of Non-Crystalline Solids, 352(42-49):5021-5024.

[8] Ogawa, K., 1997. Progress in structure analyses on carbohydrates and polysaccharides. Carbohydrate Research, 300(1):17.

[9] Ostwald, W., 1897. Studien über die Bildung und Umwandlung fester Körper. Zeitschrift für Physikalische Chemie 22:289-330 (in German).

[10] Pang, J., Lin, Q., Zhang, F.S., Tian, S.P., Sun, Y.M., 2003. Progress in the application and studies on functional material of konjac glucomannan. Journal of Strutural Chemistry, 22(6):633~642 (in Chinese).

[11] Princi, E., Vicini, S., Pedemonte, E., Arrighi, V., McEwen, I., 2005. Thermal characterisation of cellulose based materials: investigation of water content. Journal of Thermal Analysis and Calorimetry, 80(2):369-373.

[12] Ratcliffe, I., Williams, P.A., Viebke, C., Meadows, J., 2005. Physicochemical characterization of konjac glucomannan. Biomacromolecules, 6(4):1977-1986.

[13] Tye, R.J., 1991. Konjac flour: properties and applications. J. Food Technol., 45(3):82-92.

[14] Yui, K., Ogawa, A.S., 1992. Molecular and crystal structure of konjac glucomannan in the mannan II polymorphic form. Carbohydrate Research, 229(1):41-55.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE