CLC number: S562
On-line Access: 2012-06-06
Received: 2011-10-30
Revision Accepted: 2012-02-28
Crosschecked: 2012-05-11
Cited: 2
Clicked: 5640
Shu-na Yuan, Waqas Malik, Shui-jin Hua, Noreen Bibi, Xue-de Wang. In vitro inhibition of pigmentation and fiber development in colored cotton[J]. Journal of Zhejiang University Science B, 2012, 13(6): 478-486.
@article{title="In vitro inhibition of pigmentation and fiber development in colored cotton",
author="Shu-na Yuan, Waqas Malik, Shui-jin Hua, Noreen Bibi, Xue-de Wang",
journal="Journal of Zhejiang University Science B",
volume="13",
number="6",
pages="478-486",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1100336"
}
%0 Journal Article
%T In vitro inhibition of pigmentation and fiber development in colored cotton
%A Shu-na Yuan
%A Waqas Malik
%A Shui-jin Hua
%A Noreen Bibi
%A Xue-de Wang
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 6
%P 478-486
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1100336
TY - JOUR
T1 - In vitro inhibition of pigmentation and fiber development in colored cotton
A1 - Shu-na Yuan
A1 - Waqas Malik
A1 - Shui-jin Hua
A1 - Noreen Bibi
A1 - Xue-de Wang
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 6
SP - 478
EP - 486
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1100336
Abstract: Colored cotton has naturally pigmented fibers. The mechanism of pigmentation in cotton fiber is not well documented. This experiment was conducted to study the effects of respiratory chain inhibitors, i.e., rotenone and thiourea, on pigmentation and fiber development in colored cotton. After 1 d post-anthesis, ovaries were harvested and developing ovules were cultured on the liquid medium containing different concentrations of rotenone and thiourea for 30 d. The results demonstrate that both respiratory inhibitors reduced fiber length and ovule development under ovule culture conditions, and the inhibition efficiency of rotenone was much higher than that of thiourea. rotenone and thiourea also showed significant effects on fiber pigment (color) development in colored cotton. In green cotton fiber, rotenone advanced fiber pigment development by 7 d at 200 μmol/L, while thiourea inhibited fiber pigmentation at all treatment levels (400, 600, 800, 1000, and 2000 μmol/L). Both respiratory inhibitors, however, had no significant effects on pigmentation of brown cotton fibers. The activities of cytochrome c oxidase (COX) and polyphenol oxidase (PPO) decreased significantly with increasing levels of both respiratory inhibitors. It is suggested that both respiratory inhibitors have important roles in deciphering the mechanism of pigmentation and fiber development in colored cotton.
[1]Beasley, C.A., Ting, I.P., 1973. The effects of plant growth substances on in vitro fiber development from fertilized cotton ovules. Am. J. Bot., 60(2):130-139.
[2]Beasley, C.A., Ting, I.P., Linkins, A.E., Birnbaum, E.H., Delmer, D.P., 1974. Cotton Ovule Culture: A Review of Progress and a Preview of Potential. In: Street, H.E. (Ed.), Tissue Culture and Plant Science. Academic Press, New York, p.169-192.
[3]Benedict, C.R., Kohel, R.J., Jividen, G.M., 1994. Crystalline cellulose and cotton fiber strength. Crop Sci., 34(1):147-151.
[4]Buer, C.S., Muday, G.K., 2004. The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell, 16(5):1191-1205.
[5]Carpita, N.C., Delmer, D.P., 1981. Concentration and metabolic turnover of UDP-glucose in developing cotton fibers. J. Biol. Chem., 256(1):308-315.
[6]de Vetten, N., ter Horst, J., van Schaik, H., de Boer, A., Mol, J., Koes, R., 1999. A cytochrome b5 is required for full activity of flavonoid 3′,5′-hydroxylase, a cytochrome P450 involved in the formation of blue flower colors. PNAS, 96(2):778-783.
[7]Doostdar, H., Shapiro, J.P., Niedz, R., Burke, M.D., McCollum, T.G., McDonald, R.E., Mayer, R.T., 1995. A cytochrome P450 mediated naringenin 3′-hydroxylase from sweet orange cell cultures. Plant Cell Physiol., 36(1):69-77.
[8]Dubios, K.P., Erway, W.F., 1946. Studies on the mechanism of action of thiourea and related compounds. J. Biol. Chem., 165(2):711-721.
[9]Dutt, Y., Wang, X.D., Zhu, Y.G., Li, Y.Y., 2004. Breeding for high yield and fibre quality in colored cotton. Plant Breed., 123(2):145-151.
[10]Elthon, T.E., McIntosh, L., 1986. Characterization and solubilization of the alternative oxidase of Sauromatum guttatum mitochondria. Plant Physiol., 82(1):1-6.
[11]Gutman, M., Singer, T.P., Beinert, H., Casida, J.E., 1970. Reaction sites of rotenone, piericidin A, and amytal in relation to the nonheme iron components of NADH dehydrogenase. PNAS, 65(3):763-770.
[12]Hao, Z.T., Cang, J., Xu, Z., 2002. Plant Physiology Experiment Technology. Harbin Institute of Technology Press, Harbin (in Chinese).
[13]He, G.Q., Xiong, H.P., Chen, Q.H., Ruan, H., Wang, Z.Y., Traore, L., 2005. Optimization of conditions for supercritical fluid extraction of flavonoids from hops (Humulus lupulus L.). J. Zhejiang Univ.-Sci. B, 6(10):999-1004.
[14]Hoffmann, L., Besseau, S., Geoffroy, P., Ritzenthaler, C., Meyer, D., Lapierre, C., Pollet, B., Legrand, M., 2004. Silencing of hydroxycinnamoyl-coenzyme A shikimate/ quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell, 16(6):1446-1465.
[15]Horgan, D.J., Singer, T.P., Casida, J.E., 1968. Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. 13. Binding sites of rotenone, piericidin A, and amytal in the respiratory chain. J. Biol. Chem., 243(4):834-843.
[16]Hua, S.J., Wang, X.D., Yuan, S.N., Shao, M.Y., Zhao, X.Q., Zhu, S.J., Jiang, L.X., 2007. Characterization of pigmentation and cellulose synthesis in colored cotton fibers. Crop Sci., 47(4):1540-1546.
[17]Huang, W.Y., Zhang, H.C., Liu, W.X., Li, C.Y., 2012. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 13(2):94-102.
[18]Jacob-Wilk, D., Kurek, I., Hogan, P., Delmer, D.P., 2006. The cotton fiber zinc-binding domain of cellulose synthase A1 from Gossypium hirsutum displays rapid turnover in vitro and in vivo. PNAS, 103(32):12191-12196.
[19]Jacobus, W.E., Moreadith, R.W., Vandegaer, K.M., 1982. Mitochondiral respiratory control. Evidence against the regulation of respiration by extramitochondrial phosphorylation potentials or by [ATP]/[ADP] ratios. J. Biol. Chem., 257(5):2397-2402.
[20]Johnson-Flanagan, A.M., Spencer, M.S., 1981. The effect of rotenone on respiration in pea cotyledon mitochondria. Plant Physiol., 68(6):1211-1217.
[21]Kim, H.J., Triplett, B.A., 2001. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol., 127(4):1361-1366.
[22]Kitada, C., Gong, Z., Tanaka, Y., Yamazaki, M., Saito, K., 2001. Differential expression of two cytochrome P450s involved in the biosynthesis of flavones and anthocyanins in chemo-varietal forms of Perilla frutescens. Plant Cell Physiol., 42(12):1338-1344.
[23]Kohel, R.J., 1985. Genetic analysis of fiber color variants in cotton. Crop Sci., 25(5):793-797.
[24]Li, N., Ragheb, K., Lawler, G., Sturgis, J., Rajwa, B., Melendez, A., Robinson, J.P., 2003. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem., 278(10):8516-8525.
[25]Meinert, M.C., Delmer, D.P., 1977. Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiol., 59(6):1088-1097.
[26]Millar, A.H., Whelan, J., Soole, K.L., Day, D.A., 2011. Organization and regulation of mitochondrial respiration in plants. Annu. Rev. Plant Biol., 62(1):79-104.
[27]Murthy, M.S.S., 2001. Never say dye: the story of coloured cotton. Resonance, 6(12):29-35.
[28]Nakayama, T., Yonekura-Sakakibara, K., Sato, T., Kikuchi, S., Fukui, Y., Fukuchi-Mizutani, M., Ueda, T., Nakao, M., Tanaka, Y., Kusumi, T., et al., 2000. Aureusidin synthase: a polyphenol oxidase homolog responsible for flower coloration. Science, 290(5494):1163-1166.
[29]Pharo, R.L., Sordahl, A.L., Vyas, S.R., Sandi, D.R., 1966. Studies on dihydronicotinamide adenine dinucleotide ubiquinone reductase. I. Assay of ubiquinone reductase activity in submitochondrial particles and extracts. J. Biol. Chem., 241(20):4771-4780.
[30]Prasad, T.K., Anderson, M.D., Stewart, C.R., 1994. Acclimation, hydrogen peroxide, and abscisic acid protect mitochondria against irreversible chilling injury in maize seedlings. Plant Physiol., 105(2):619-627.
[31]Russell, D.W., Galston, A.W., 1969. Blockage by gibberellic acid of phytochrome effects on growth, auxin responses, and flavonoid synthesis in etiolated pea internodes. Plant Physiol., 44(9):1211-1216.
[32]Schmutz, A., Jenny, T., Amrhein, N., Ryser, U., 1993. Caffeic acid and glycerol are constituents of the suberin layers in green cotton fibres. Planta, 189(3):453-460.
[33]Schmutz, A., Buchala, A.J., Ryser, U., 1996. Changing the dimensions of suberin lamellae of green cotton fibers with a specific inhibitor of the endoplasmic reticulum-associated fatty acid elongases. Plant Physiol., 110(2):403-411.
[34]Shi, Y.H., Zhu, S.W., Mao, X.Z., Feng, J.X., Qin, Y.M., Zhang, L., Cheng, J., Wei, L.P., Wang, Z.Y., Zhu, Y.X., 2006. Transcriptome profiling, molecular biological and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell, 18(3):651-664.
[35]Solfanelli, C., Poggi, A., Loreti, E., Alpi, A., Perata, P., 2006. Sucrose-specific induction of the anthocyanin biosynthesis pathway in Arabidopsis. Plant Physiol., 140(2):637-646.
[36]Solomos, T., Laties, G., 1976. Effects of cyanide and ethylene on the respiration of cyanide-sensitive and cyanide-resistant plant tissues. Plant Physiol., 58(1):47-50.
[37]Sun, Y., Veerabomma, S., Abdel-Mageed, H.A., Fokar, M., Asami, T., Yoshida, S., Allen, R.D., 2005. Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiol., 46(8):1384-1391.
[38]Taliercio, E., Haigler, C.H., 2011. The effect of calcium on early fiber elongation in cotton ovule culture. J. Cotton Sci., 15:1-8.
[39]Tamagnone, L., Merida, A., Parr, A., Mackay, S., Culianez-Macia, F.A., Roberts, K., Martin, C., 1998. The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell, 10(2):135-154.
[40]Wang, X.D., Jiang, S.L., Li, Y.Y., Xu, Y.N., 2002. A suppressed gene in integument cells of a fiberless seed mutant in upland cotton. J. Zhejiang Univ.-Sci., 3(5):594-599.
[41]Weiss, D., van Tunen, A.J., Halevy, A.H., Mol, J.N.M., Gerats, A.G.M., 1990. Stamens and gibberellic acid in the regulation of flavonoid gene expression in the corolla of petunia hybrida. Plant Physiol., 94(2):511-515.
[42]Winkel-Shirley, B., 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol., 126(2):485-493.
[43]Xiao, Y., Zhang, Z., Yin, M., Luo, M., Li, X., Hou, L., Pei, Y., 2007. Cotton flavonoid structural genes related to the pigmentation in brown fibers. Biochem. Biophys. Res. Commun., 358(1):73-78.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
Mamoona@Cotton Research Statiom<mamoonacrs@gmail.com>
2012-05-18 01:58:30
Being a cotton breeder I found this paper very much informative and this study unvail many facts regarding the pathways involve in fibre pigmentation