Full Text:   <3693>

CLC number: R58

On-line Access: 2014-08-05

Received: 2013-07-24

Revision Accepted: 2013-11-18

Crosschecked: 2014-05-26

Cited: 4

Clicked: 6999

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.8 P.735-742


Protective effect of indomethacin in renal ischemia-reperfusion injury in mice*

Author(s):  Sheng-hong Zhu1,2, Li-jia Zhou1, Hong Jiang1, Rong-jun Chen1, Chuan Lin1, Shi Feng1, Juan Jin1, Jiang-hua Chen1, Jian-yong Wu1

Affiliation(s):  1. Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; more

Corresponding email(s):   wujianyong@medmail.com.cn

Key Words:  Non-steroidal anti-inflammatory drug (NSAID), Indomethacin (IMT), Ischemia-reperfusion injury (IRI), Dosage, Protective effect

Sheng-hong Zhu, Li-jia Zhou, Hong Jiang, Rong-jun Chen, Chuan Lin, Shi Feng, Juan Jin, Jiang-hua Chen, Jian-yong Wu. Protective effect of indomethacin in renal ischemia-reperfusion injury in mice[J]. Journal of Zhejiang University Science B, 2014, 15(8): 735-742.

@article{title="Protective effect of indomethacin in renal ischemia-reperfusion injury in mice",
author="Sheng-hong Zhu, Li-jia Zhou, Hong Jiang, Rong-jun Chen, Chuan Lin, Shi Feng, Juan Jin, Jiang-hua Chen, Jian-yong Wu",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Protective effect of indomethacin in renal ischemia-reperfusion injury in mice
%A Sheng-hong Zhu
%A Li-jia Zhou
%A Hong Jiang
%A Rong-jun Chen
%A Chuan Lin
%A Shi Feng
%A Juan Jin
%A Jiang-hua Chen
%A Jian-yong Wu
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 8
%P 735-742
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300196

T1 - Protective effect of indomethacin in renal ischemia-reperfusion injury in mice
A1 - Sheng-hong Zhu
A1 - Li-jia Zhou
A1 - Hong Jiang
A1 - Rong-jun Chen
A1 - Chuan Lin
A1 - Shi Feng
A1 - Juan Jin
A1 - Jiang-hua Chen
A1 - Jian-yong Wu
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 8
SP - 735
EP - 742
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300196

Objective: To evaluate the renoprotection effects of non-steroidal anti-inflammatory drugs (NSAIDs) in renal ischemia-reperfusion injury (IRI) and the cyclooxygenase (COX)-1/2 blockade association by indomethacin (IMT) in the mice model. Methods: After the left renal pedicle of mice was clamped, IMT was administrated by intraperitoneal injection with four doses: 1, 3, 5, and 7 mg/kg. Blood and kidney samples were collected 24 h after IRI. The renal functions were assayed by the cytokines and serum creatinine (SCr) using enzyme-linked immunosorbent assay (ELISA) kits. Kidney samples were analyzed by hematoxylin and eosin (H&E) and immunohistochemistry stainings. Results: The mice administered with 5 mg/kg IMT had a marked reduction in SCr and significantly less tubular damage. The tumor necrosis factor α (TNF-α) activity in renal homogenates and interleukin 6 (IL-6) activity in serum had a marked reduction at doses of 5 and 7 mg/kg IMT. The administration of 3 and 5 mg/kg IMT had a marked reduction in the ratio of thromboxane B2 to 6-keto-prostaglandin F. COX-1 and COX-2 stainings were weaker in 5 mg/kg IMT groups than that in the other groups. Conclusions: There was a dose response in the IMT function of renal IRI in mice, and IMT had a protective effect in a certain dose range. The effect of IMT on mice IRI was related to COX-1/2 blockades.



Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Bellomo, R., Auriemma, S., Fabbri, A., 2008. The pathophysiology of cardiac surgery-associated acute kidney injury (CSA-AKI). Int J Artif Organs, 31(2):166-178. 

[2] Bonventre, J.V., Weinberg, J.M., 2003. Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol, 14(8):2199-2210. 

[3] Carnieto, A., Dourado, P.M., Luz, P.L., 2009. Selective cyclooxygenase-2 inhibition protects against myocardial damage in experimental acute ischemia. Clinics, 64(3):245-252. 

[4] Chapman, J.R., O'Connell, P.J., Nankivell, B.J., 2005. Chronic renal allograft dysfunction. J Am Soc Nephrol, 16(10):3015-3126. 

[5] Chertow, G.M., Burdick, E., Honour, M., 2005. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol, 16(11):3365-3370. 

[6] Donnahoo, K.K., Meng, X., Ayala, A., 1999. Early kidney TNF-α expression mediates neutrophil infiltration and injury after renal ischemia-reperfusion. Am J Physiol Regul Integr Comp Physiol, 277(3):R922-R929. 

[7] Feitoza, C.Q., Sanders, H., Cenedeze, M., 2002. Pretreatment with indomethacin protects from acute renal failure following ischemia-reperfusion injury. Transpl Proc, 34(7):2979-2980. 

[8] Feitoza, C.Q., Câmara, N.O., Pinheiro, H.S., 2005. Cyclooxygenase 1 and/or 2 blockade ameliorates the renal tissue damage triggered by ischemia and reperfusion injury. Int Immunopharmacol, 5(1):79-84. 

[9] Feitoza, C.Q., Goncalvs, G.M., Semedo, P., 2008. Inhibition of COX1 and 2 prior to renal ischemia/reperfusion injury decreases the development of fibrosis. Mol Med, 14(11-12):724-730. 

[10] Feitoza, C.Q., Semedo, P., Gonalves, G.M., 2010. Modulation of inflammatory response by selective inhibition of cyclooxygenase-1 and cyclooxygenase-2 in acute kidney injury. Inflamm Res, 59(3):167-175. 

[11] Furtado, N., Beier, U.H., Gorla, S.R., 2008. The effect of indomethacin on systemic and renal hemodynamics in neonatal piglets during experimental endotoxemia. Pediatr Surg Int, 24(8):907-911. 

[12] Hamada, T., Tsuchihashi, S., Avanesyan, A., 2008. Cyclooxygenase-2 deficiency enhances Th2 immune responses and impairs neutrophil recruitment in hepatic ischemia/reperfusion injury. J Immunol, 180(3):1843-1853. 

[13] John, R., Herzenberg, A.M., 2009. Renal toxicity of therapeutic drugs. J Clin Pathol, 62(6):505-515. 

[14] Kehlet, H., 2004. Effect of postoperative pain treatment on outcome-current status and future strategies. Langenbecks Arch Surg, 389(4):244-249. 

[15] Kellum, J.A., Bellomo, R., Ronco, C., 2008. Definition and classification of acute kidney injury. Nephron Clin Pract, 109(4):c182-c187. 

[16] Kinsey, G.R., Li, L., Okusa, M.D., 2008. Inflammation in acute kidney injury. Nephron Exp Nephrol, 109(4):e102-e107. 

[17] Lee, A., Cooper, M.C., Craig, J.C., 2007. Effects of nonsteroidal anti-inflammatory drugs on postoperative renal function in adults with normal renal function. Cochrane Database Syst Rev, (2):CD002765

[18] Levy, E.M., Viscoli, C.M., Horwitz, R.I., 1996. The effect of acute renal failure on mortality. A cohort analysis. JAMA, 275(19):1489-1494. 

[19] Lutz, J., Thrmel, K., Heemann, U., 2010. Anti-inflammatory treatment strategies for ischemia/reperfusion injury in transplantation. J Inflamm, 7:27

[20] McDaid, C., Maund, E., Rice, S., 2010. Paracetamol and selective and non-selective non-steroidal anti-inflammatory drugs (NSAIDs) for the reduction of morphine-related side effects after major surgery: a systematic review. Health Technol Assess, 14(17):1-153. 

[21] Miranda, R.N., Briggs, R.C., Kinney, M.C., 2000. Immunohistochemical detection of cyclin D1 using optimized conditions is highly specific for mantle cell lymphoma and hairy cell leukemia. Modern Pathol, 13(12):1308-1314. 

[22] Otani, Y., Takeyoshi, I., Yoshinari, D., 2007. Effects of the COX-2 inhibitor FK3311 on ischemia—reperfusion injury in the rat lung. J Invest Surg, 20(3):175-180. 

[23] Peeters, P., Terryn, W., Vanholder, R., 2004. Delayed graft function in renal transplantation. Curr Opin Crit Care, 10(6):489-498. 

[24] Perco, P., Pleban, C., Kainz, A., 2007. Gene expression and biomarkers in renal transplant ischemia reperfusion injury. Transpl Int, 20(1):2-11. 

[25] Schiffl, H., Lang, S.M., Fischer, R., 2002. Daily hemodialysis and the outcome of acute renal failure. N Engl J Med, 346(5):305-310. 

[26] Schneider, R., Meusel, M., Renker, S., 2009. Low-dose indomethacin after ischemic acute kidney injury prevents downregulation of Oat1/3 and improves renal outcome. Am J Physiol Renal Physiol, 297(6):F1614-F1621. 

[27] Takeyoshi, I., Sunose, Y., Iwazaki, S., 2001. The effect of a selective cyclooxygenase-2 inhibitor in extended liver resection with ischemia in dogs. J Surg Res, 100(1):25-31. 

[28] Talab, S.S., Emami, H., Elmi, A., 2010. Chronic lithium treatment protects the rat kidney againest ischemia/reperfusion injury: the role of nitric oxide and cyclooxygenase pathways. Eur J Pharmacol, 647(1-3):171-177. 

[29] Wan, X., Fan, L., Hu, B., 2011. Small interfering RNA targeting IKKβ prevents renal ischemia-reperfusion injury in rats. Am J Physiol Renal Physiol, 300(4):F857-F863. 

[30] Ysebaert, D.K., de Greef, K.E., de Beuf, A., 2004. T cells as mediators in renal ischemia/reperfusion injury. Kidney Int, 66(2):491-496. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE