Full Text:   <3984>

Summary:  <1987>

CLC number: Q58

On-line Access: 2014-04-06

Received: 2013-09-03

Revision Accepted: 2013-12-15

Crosschecked: 2014-03-18

Cited: 9

Clicked: 7325

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.4 P.313-321


Aroma changes of black tea prepared from methyl jasmonate treated tea plants*

Author(s):  Jiang Shi1,2, Li Wang3, Cheng-ying Ma1, Hai-peng Lv1, Zong-mao Chen1, Zhi Lin1

Affiliation(s):  1. Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; more

Corresponding email(s):   linz@tricaas.com

Key Words:  Aroma, Black tea, Methyl jasmonate (MeJA), Headspace solid-phase microextraction (HS-SPME), Gas chromatography-mass spectrometry (GC-MS), Gas chromatography-olfactometry (GC-O), Gene expression

Jiang Shi, Li Wang, Cheng-ying Ma, Hai-peng Lv, Zong-mao Chen, Zhi Lin. Aroma changes of black tea prepared from methyl jasmonate treated tea plants[J]. Journal of Zhejiang University Science B, 2014, 15(4): 313-321.

@article{title="Aroma changes of black tea prepared from methyl jasmonate treated tea plants",
author="Jiang Shi, Li Wang, Cheng-ying Ma, Hai-peng Lv, Zong-mao Chen, Zhi Lin",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Aroma changes of black tea prepared from methyl jasmonate treated tea plants
%A Jiang Shi
%A Li Wang
%A Cheng-ying Ma
%A Hai-peng Lv
%A Zong-mao Chen
%A Zhi Lin
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 4
%P 313-321
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300238

T1 - Aroma changes of black tea prepared from methyl jasmonate treated tea plants
A1 - Jiang Shi
A1 - Li Wang
A1 - Cheng-ying Ma
A1 - Hai-peng Lv
A1 - Zong-mao Chen
A1 - Zhi Lin
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 4
SP - 313
EP - 321
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300238

methyl jasmonate (MeJA) was widely applied in promoting food quality. aroma is one of the key indicators in judging the quality of tea. This study examined the effect of exogenous MeJA treatment on tea aroma. The aroma components in black tea prepared from MeJA-treated fresh tea leaves were extracted using headspace solid-phase microextraction (HS-SPME) and were analyzed using gas chromatography-mass spectrometry (GC-MS) and GC-olfactometry (GC-O). Forty-five volatile compounds were identified. The results revealed that the MeJA-treated black tea had higher levels of terpene alcohols and hexenyl esters than the untreated tea. Moreover, several newly components, including copaene, cubenol, and indole, were induced by the MeJA treatment. The activities of polyphenol oxidase and β-glucosidase in fresh tea leaves changed after the MeJA treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the gene expression levels of polyphenol oxidase and β-primeverosidase were upregulated by two and three folds, respectively, by the MeJA treatment (P<0.01); however, the gene expression of β-glucosidase was downregulated to a half level. In general, the aroma quality of the MeJA-treated black tea was clearly improved.




Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Alvarez, S., Zhu, M., Chen, S., 2009. Proteomics of Arabidopsis redox proteins in response to methyl jasmonate. J Proteom, 73(1):30-40. 

[2] Ayala-Zavala, J.F., Wang, S.Y., Wang, C.Y., 2005. Methyl jasmonate in conjunction with ethanol treatment increases antioxidant capacity, volatile compounds and postharvest life of strawberry fruit. Eur Food Res Technol, 221(6):731-738. 

[3] Bailey, B.A., Strem, M.D., Bae, H., 2005. Gene expression in leaves of Theobroma cacao in response to mechanical wounding, ethylene, and/or methyl jasmonate. Plant Sci, 168(5):1247-1258. 

[4] Belhadj, A., Telef, N., Saigne, C., 2008. Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures. Plant Physiol Biochem, 46(4):493-499. 

[5] Bhattacharyya, N., Seth, S., Tudu, B., 2007. Monitoring of black tea fermentation process using electronic nose. J Food Eng, 80(4):1146-1156. 

[6] Blanch, G.P., Flores, G., Ruiz del Castillo, M.L., 2011. Influence of methyl jasmonate in conjunction with ethanol on the formation of volatile compounds in berries belonging to the RosaceaePostharv Biol Technol, 62(2):168-178. 

[7] Chen, Y., Pang, Q., Dai, S., 2011. Proteomic identification of differentially expressed proteins in Arabidopsis in response to methyl jasmonate. J Plant Physiol, 168(10):995-1008. 

[8] Cho, J.Y., Mizutani, M., Shimizu, B.I., 2007. Chemical profiling and gene expression profiling during the manufacturing process of Taiwan oolong tea “Oriental Beauty”. Biosci Biotechnol Biochem, 71(6):1476-1486. 

[9] Degenhardt, D.C., Lincoln, D.E., 2006. Volatile emissions from an odorous plant in response to herbivory and methyl jasmonate exposure. J Chem Ecol, 32(4):725-743. 

[10] de la Peña Moreno, F., Blanch, G.P., Flores, G., 2010. Development of a method based on on-line reversed phase liquid chromatography and gas chromatography coupled by means of an adsorption-desorption interface for the analysis of selected chiral volatile compounds in methyl jasmonate treated strawberries. J Chromatogr A, 1217(7):1083-1088. 

[11] de la Peña Moreno, F., Blanch, G.P., Flores, G., 2010. Impact of postharvest methyl jasmonate treatment on the volatile composition and flavonol content of strawberries. J Sci Food Agric, 90(6):989-994. 

[12] Gohain, B., Borchetia, S., Bhorali, P., 2012. Understanding Darjeeling tea flavour on a molecular basis. Plant Mol Biol, 78(6):577-597. 

[13] Ijima, Y., Ogawa, K., Watanabe, N., 1998. Characterization of β-primeverosidase, being concerned with alcoholic aroma formation in tea leaves to be processed into black tea, and preliminary observations on its substrate specificity. J Agric Food Chem, 46(5):1712-1718. 

[14] Kawakami, M., Ganguly, S.N., Banerjee, J., 1995. Aroma composition of oolong tea and black tea by brewed extraction method and characterizing compounds of Darjeeling tea aroma. J Agric Food Chem, 43(1):200-207. 

[15] Kim, H.J., Chen, F., Wang, X., 2006. Effect of methyl jasmonate on secondary metabolites of sweet basil (Ocimum basilicum L.). J Agric Food Chem, 54(6):2327-2332. 

[16] Kuroyanagi, M., Arakawa, T., Mikami, Y., 1998. Phytoalexins from hairy roots of Hyoscyamus albus treated with methyl jasmonate. J Nat Prod, 61(12):1516-1519. 

[17] Kuźma, .., Bruchajzer, E., Wysokińska, H., 2009. Methyl jasmonate effect on diterpenoid accumulation in Salvia sclarea hairy root culture in shake flasks and sprinkle bioreactor. Enzyme Microb Technol, 44(6-7):406-410. 

[18] Lin, J., Zhang, P., Pan, Z., 2013. Discrimination of oolong tea (Camellia sinensis) varieties based on feature extraction and selection from aromatic profiles analyzed by HS-SPME/GC-MS. Food Chem, 141(1):259-265. 

[19] Loivamki, M., Holopainen, J.K., Nerg, A.M., 2004. Chemical changes induced by methyl jasmonate in oilseed rape grown in the laboratory and in the field. J Agric Food Chem, 52(25):7607-7613. 

[20] Lv, H.P., Zhong, Q.S., Lin, Z., 2012. Aroma characterisation of Pu-erh tea using headspace-solid phase micro-extraction combined with GC/MS and GC-olfactometry. Food Chem, 130(4):1074-1081. 

[21] Lyons, R., Manners, J.M., Kazan, K., 2013. Jasmonate biosynthesis and signaling in monocots: a comparative overview. Plant Cell Rep, 32(6):815-827. 

[22] Martin, D.M., Gershenzon, J., Bohlmann, J., 2003. Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol, 132(3):1586-1599. 

[23] Muthumani, T., Verma, D.P., Venkatesan, S., 2013. Influence of climatic seasons on quality of south Indian black teas. J Nat Prod Plant Resource, 3(1):30-39. 

[24] Ogawa, K., Ijima, Y., Guo, W., 1997. Purification of a β-primeverosidase concerned with alcoholic aroma formation in tea leaves (cv. Shuixian) to be processed to oolong tea. J Agric Food Chem, 45(3):877-882. 

[25] Qin, Z., Pang, X., Chen, D., 2013. Evaluation of Chinese tea by the electronic nose and gas chromatography-mass spectrometry: correlation with sensory properties and classification according to grade level. Food Res Int, 53(2):864-874. 

[26] Qiu, D., Pan, X., Wilson, I.W., 2009. High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis). Gene, 436(1-2):37-44. 

[27] Ravichandran, R., 2002. Carotenoid composition, distribution and degradation to flavour volatiles during black tea manufacture and the effect of carotenoid supplementation on tea quality and aroma. Food Chem, 78(1):23-28. 

[28] Rawat, R., Gulati, A., Kiran Babu, G.D., 2007. Characterization of volatile components of Kangra orthodox black tea by gas chromatography-mass spectrometry. Food Chem, 105(1):229-235. 

[29] Rodriguez-Saona, C., Crafts-Brandner, S.J., Par, P.W., 2001. Exogenous methyl jasmonate induces volatile emissions in cotton plants. J Chem Ecol, 27(4):679-695. 

[30] Sanderson, G.W., Co, H., Grahamm, H.N., 1973. Formation of black tea aroma. J Agric Food Chem, 21(4):576-585. 

[31] Sarry, J.E., Gnata, Z., 2004. Plant and microbial glycoside hydrolases: volatile release from glycosidic aroma precursors. Food Chem, 87(4):509-521. 

[32] Schuh, C., Schieberle, P., 2006. Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: quantitative differences between tea leaves and infusion. J Agric Food Chem, 54(3):916-924. 

[33] Tomlins, K.I., Mashingaidze, A., 1997. Influence of withering, including leaf handling, on the manufacturing and quality of black teas—a review. Food Chem, 60(4):573-580. 

[34] Vitzthum, O.G., Werkhoff, P., Hubert, P., 1975. New volatile constituents of black tea aroma. J Agric Food Chem, 23(5):999-1003. 

[35] Wakuta, S., Hamada, S., Ito, H., 2010. Identification of a β-glucosidase hydrolyzing tuberonic acid glucoside in rice (Oryza sativa L.). Phytochemistry, 71(11-12):1280-1288. 

[36] Wang, D., Kurasawa, E., Yamaguchi, Y., 2001. Analysis of glycosidically bound aroma precursors in tea leaves. 2. Changes in glycoside contents and glycosidase activities in tea leaves during the black tea manufacturing process. J Agric Food Chem, 49(4):1900-1903. 

[37] Yamanishi, T., Kobayashi, A., Nakamura, H., 1968. Flavor of black tea. Agric Biol Chem, 32(3):379-386. 

[38] Yamanishi, T., Wickremasinghe, R.L., Perera, K.P.W.C., 1968. Studies on the quality and flavour of tea. Part 3. Gas chromatographic analyses of the aroma complex. Tea Quart, 39:81-86. 

[39] Yang, Z., Baldermann, S., Watanabe, N., 2013. Recent studies of the volatile compounds in tea. Food Res Int, 53(2):585-599. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE