Full Text:   <1887>

Summary:  <1417>

CLC number: B842

On-line Access: 2015-08-04

Received: 2014-10-27

Revision Accepted: 2015-06-08

Crosschecked: 2015-07-08

Cited: 2

Clicked: 3284

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jian Huang

http://orcid.org/0000-0002-7259-3066

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2015 Vol.16 No.8 P.661-671

http://doi.org/10.1631/jzus.B1400287


Numerical magnitude processing in abacus-trained children with superior mathematical ability: an EEG study


Author(s):  Jian Huang, Feng-lei Du, Yuan Yao, Qun Wan, Xiao-song Wang, Fei-yan Chen

Affiliation(s):  1Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   chenfy@zju.edu.cn

Key Words:  Electroencephalography (EEG), Abacus training, Distance effect, Numerical magnitude processing, Child


Jian Huang, Feng-lei Du, Yuan Yao, Qun Wan, Xiao-song Wang, Fei-yan Chen. Numerical magnitude processing in abacus-trained children with superior mathematical ability: an EEG study[J]. Journal of Zhejiang University Science B, 2015, 16(8): 661-671.

@article{title="Numerical magnitude processing in abacus-trained children with superior mathematical ability: an EEG study",
author="Jian Huang, Feng-lei Du, Yuan Yao, Qun Wan, Xiao-song Wang, Fei-yan Chen",
journal="Journal of Zhejiang University Science B",
volume="16",
number="8",
pages="661-671",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400287"
}

%0 Journal Article
%T Numerical magnitude processing in abacus-trained children with superior mathematical ability: an EEG study
%A Jian Huang
%A Feng-lei Du
%A Yuan Yao
%A Qun Wan
%A Xiao-song Wang
%A Fei-yan Chen
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 8
%P 661-671
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400287

TY - JOUR
T1 - Numerical magnitude processing in abacus-trained children with superior mathematical ability: an EEG study
A1 - Jian Huang
A1 - Feng-lei Du
A1 - Yuan Yao
A1 - Qun Wan
A1 - Xiao-song Wang
A1 - Fei-yan Chen
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 8
SP - 661
EP - 671
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400287


Abstract: 
distance effect has been regarded as the best established marker of basic numerical magnitude processes and is related to individual mathematical abilities. A larger behavioral distance effect is suggested to be concomitant with lower mathematical achievement in children. However, the relationship between distance effect and superior mathematical abilities is unclear. One could get superior mathematical abilities by acquiring the skill of abacus-based mental calculation (AMC), which can be used to solve calculation problems with exceptional speed and high accuracy. In the current study, we explore the relationship between distance effect and superior mathematical abilities by examining whether and how the AMC training modifies numerical magnitude processing. Thus, mathematical competencies were tested in 18 abacus-trained children (who accepted the AMC training) and 18 non-trained children. electroencephalography (EEG) waveforms were recorded when these children executed numerical comparison tasks in both Arabic digit and dot array forms. We found that: (a) the abacus-trained group had superior mathematical abilities than their peers; (b) distance effects were found both in behavioral results and on EEG waveforms; (c) the distance effect size of the average amplitude on the late negative-going component was different between groups in the digit task, with a larger effect size for abacus-trained children; (d) both the behavioral and EEG distance effects were modulated by the notation. These results revealed that the neural substrates of magnitude processing were modified by AMC training, and suggested that the mechanism of the representation of numerical magnitude for children with superior mathematical abilities was different from their peers. In addition, the results provide evidence for a view of non-abstract numerical representation.

高数学能力珠心算儿童数量表征的脑电研究

目的:阐明珠心算儿童的高数学能力与数字距离效应之间的关系。
创新点:以经过珠心算训练的儿童为研究对象,探索通过珠心算训练获得的高数学能力与数字距离效应(表征数量加工的重要标志)的关系及珠心算儿童拥有高数学能力的神经基础。
方法:实验对象选取经过一年半珠心算训练的儿童,实验任务为数字比较任务(数字形式分为阿拉伯数字和圆点两种),在执行数字比较任务的同时记录儿童的脑电信息,对不同组别不同数字形式任务的行为学和脑电数据进行对比分析。
结论:通过珠心算训练而获得高数学能力儿童表征数量信息的神经基础与普通儿童之间会存在差异,说明珠心算训练可能改变儿童加工数量信息的神经基础。

关键词:脑电图;珠算训练;距离效应;数量加工;儿童

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ansari, D., Karmiloff-Smith, A., 2002. Atypical trajectories of number development: a neuroconstructivist perspective. Trends Cogn. Sci., 6(12):511-516.

[2]Ansari, D., Garcia, N., Lucas, E., et al., 2005. Neural correlates of symbolic number processing in children and adults. Neuroreport, 16(16):1769-1773.

[3]Butterworth, B., 2005. The development of arithmetical abilities. J. Child Psychol. Psychiatry, 46(1):3-18.

[4]Chen, F., Hu, Z., Zhao, X., et al., 2006. Neural correlates of serial abacus mental calculation in children: a functional MRI study. Neurosci. Lett., 403(1-2):46-51.

[5]Cohen Kadosh, R., Walsh, V., 2009. Numerical representation in the parietal lobes: abstract or not abstract? Behav. Brain Sci., 32(3-4):313-328.

[6]Cohen Kadosh, R., Cohen Kadosh, K., Kaas, A., et al., 2007. Notation-dependent and -independent representations of numbers in the parietal lobes. Neuron, 53(2):307-314.

[7]Dehaene, S., 1996. The organization of brain activations in number comparison: event-related potentials and the additive-factors method. J. Cogn. Neurosci., 8(1):47-68.

[8]Dehaene, S., Akhavein, R., 1995. Attention, automaticity, and levels of representation in number processing. J. Exp. Psychol. Learn. Mem. Cogn., 21(2):314.

[9]Dehaene, S., Dupoux, E., Mehler, J., 1990. Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. J. Exp. Psychol. Hum. Percept. Perform., 16(3):626.

[10]Dehaene, S., Dehaene-Lambertz, G., Cohen, L., 1998. Abstract representations of numbers in the animal and human brain. Trends Neurosci., 21(8):355-361.

[11]Dehaene, S., Molko, N., Cohen, L., et al., 2004. Arithmetic and the brain. Curr. Opin. Neurobiol., 14(2):218-224.

[12]de Smedt, B., Verschaffel, L., Ghesquière, P., 2009. The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. J. Exp. Child Psychol., 103(4):469-479.

[13]Du, F., Chen, F., Li, Y., et al., 2013. Abacus training modulates the neural correlates of exact and approximate calculations in Chinese children: an fMRI study. BioMed Res. Int., 2013:694075.

[14]Frank, M.C., Barner, D., 2012. Representing exact number visually using mental abacus. J. Exp. Psychol. Gen., 141(1):134-139.

[15]Furman, T., Rubinsten, O., 2012. Symbolic and non symbolic numerical representation in adults with and without developmental dyscalculia. Behav. Brain Funct., 8(1):55.

[16]Ganor-Stern, D., Tzelgov, J., 2008. Across-notation automatic numerical processing. J. Exp. Psychol. Learn. Mem. Cogn., 34(2):430.

[17]Grune, K., Mecklinger, A., Ullsperger, P., 1993. Mental comparison: P300 component of the ERP reflects the symbolic distance effect. Neuroreport, 4(11):1272-1274.

[18]Haffner, J., Baro, K., Langner, C., et al., 2005. HRT 1-4: Heidelberger Rechentest: Erfassung Mathematischer Basiskompetenzen im Grundschulalter. Hogrefe, Gottingen (in German).

[19]Hanakawa, T., Honda, M., Okada, T., et al., 2003. Neural correlates underlying mental calculation in abacus experts: a functional magnetic resonance imaging study. Neuroimage, 19(2):296-307.

[20]Hatano, G., 1988. Social and motivational bases for mathematical understanding. NDCAD, 1988(41):55-70.

[21]Hatano, G., Miyake, Y., Binks, M.G., 1977. Performance of expert abacus operators. Cognition, 5(1):47-55.

[22]Heine, A., Wißmann, J., Tamm, S., et al., 2013. An electrophysiological investigation of non-symbolic magnitude processing: numerical distance effects in children with and without mathematical learning disabilities. Cortex, 49(8):2162-2177.

[23]Henik, A., Tzelgov, J., 1982. Is three greater than five: the relation between physical and semantic size in comparison tasks. Mem. Cognit., 10(4):389-395.

[24]Holloway, I.D., Ansari, D., 2009. Mapping numerical magnitudes onto symbols: the numerical distance effect and individual differences in children’s mathematics achievement. J. Exp. Child Psychol., 103(1):17-29.

[25]Jiang, T., Qiao, S., Li, J., et al., 2010. Effects of symbol type and numerical distance on the human event-related potential. Neuropsychologia, 48(1):201-210.

[26]Landerl, K., Bevan, A., Butterworth, B., 2004. Developmental dyscalculia and basic numerical capacities: a study of 8–9-year-old students. Cognition, 93(2):99-125.

[27]Libertus, M.E., Woldorff, M.G., Brannon, E.M., 2007. Electrophysiological evidence for notation independence in numerical processing. Behav. Brain Funct., 3(1):1-15.

[28]Mccloskey, M., 1992. Cognitive mechanisms in numerical processing: evidence from acquired dyscalculia. Cognition, 44(1-2):107-157.

[29]Moyer, R.S., Landauer, T.K., 1967. Time required for judgements of numerical inequality. Nature, 215(5109):1519-1520.

[30]Mussolin, C., de Volder, A., Grandin, C., et al., 2010a. Neural correlates of symbolic number comparison in developmental dyscalculia. J. Cogn. Neurosci., 22(5):860-874.

[31]Mussolin, C., Mejias, S., Noël, M.P., 2010b. Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115(1):10-25.

[32]Naccache, L., Dehaene, S., 2001. Unconscious semantic priming extends to novel unseen stimuli. Cognition, 80(3):215-229.

[33]Paulsen, D.J., Neville, H.J., 2008. The processing of non-symbolic numerical magnitudes as indexed by ERPs. Neuropsychologia, 46(10):2532-2544.

[34]Picton, T.W., 1992. The P300 wave of the human event-related potential. J. Clin. Neurophysiol., 9(4):456-479.

[35]Pinel, P., Dehaene, S., Riviere, D., et al., 2001. Modulation of parietal activation by semantic distance in a number comparison task. Neuroimage, 14(5):1013-1026.

[36]Price, G.R., Holloway, I., Räsänen, P., et al., 2007. Impaired parietal magnitude processing in developmental dyscalculia. Curr. Biol., 17(24):R1042-R1043.

[37]Reeve, R., Reynolds, F., Humberstone, J., et al., 2012. Stability and change in markers of core numerical competencies. J. Exp. Psychol. Gen., 141(4):649.

[38]Rumelhart, D.E., Mcclelland, J.L., Group, P.R., 1986. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations. MIT Press, Cambridge, MA, p.560-567.

[39]Schwarz, W., Heinze, H.J., 1998. On the interaction of numerical and size information in digit comparison: a behavioral and event-related potential study. Neuropsychologia, 36(11):1167-1179.

[40]Schwarz, W., Ischebeck, A., 2000. Sequential effects in number comparison. J. Exp. Psychol. Hum. Percept. Perform., 26(5):1606.

[41]Soltész, F., Szűcs, D., Dékány, J., et al., 2007. A combined event-related potential and neuropsychological investigation of developmental dyscalculia. Neurosci. Lett., 417(2):181-186.

[42]Soltész, F., Goswami, U., White, S., et al., 2011. Executive function effects and numerical development in children: behavioural and ERP evidence from a numerical stroop paradigm. Learn. Individ. Differ., 21(6):662-671.

[43]Szũcs, D., Soltész, F., Jármi, E., et al., 2007. The speed of magnitude processing and executive functions in controlled and automatic number comparison in children: an electro-encephalography study. Behav. Brain Funct., 3(1):23.

[44]Temple, E., Posner, M.I., 1998. Brain mechanisms of quantity are similar in 5-year-old children and adults. PNAS, 95(13):7836-7841.

[45]Turconi, E., Jemel, B., Rossion, B., et al., 2004. Electrophysiological evidence for differential processing of numerical quantity and order in humans. Cogn. Brain Res., 21(1):22-38.

[46]Wang, Y., Geng, F., Hu, Y., et al., 2013. Numerical processing efficiency improved in experienced mental abacus children. Cognition, 127(2):149-158.

[47]Wu, H.R., Li, L., 2006. Norm establishment for Chinese rating scale of pupil’s mathematics abilities. J. Clin. Rehab. Tissue Eng. Res., 10(30):168-171 (in Chinese).

[48]Zhang, H., Wang, X., 1985. The Chinese Version of the Raven’s Standard Progressive Matrices. Beijing Nor. Univ., Beijing, China (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

mahmood<mahmoodzz321@gamil>

2016-02-05 23:19:24

Hancan Zhu, KI have a problem and look for help me out in the research submitted by Hola Hlasatzhewei Liang , Xiaoliang Cheng

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE