Full Text:   <1907>

Summary:  <1422>

CLC number: S436.418

On-line Access: 2016-04-05

Received: 2015-10-10

Revision Accepted: 2015-12-10

Crosschecked: 2016-03-15

Cited: 0

Clicked: 2778

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jing-ze Zhang

http://orcid.org/0000-0001-8604-8280

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2016 Vol.17 No.4 P.271-281

http://doi.org/10.1631/jzus.B1500243


Antagonistic interaction between Trichoderma asperellum and Phytophthora capsici in vitro


Author(s):  Heng Jiang, Liang Zhang, Jing-ze Zhang, Mohammad Reza Ojaghian, Kevin D. Hyde

Affiliation(s):  Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   jzzhang@zju.edu.cn

Key Words:  Antagonism, Electron microscopy, Oogonium, Oospore, Pepper


Heng Jiang, Liang Zhang, Jing-ze Zhang, Mohammad Reza Ojaghian, Kevin D. Hyde. Antagonistic interaction between Trichoderma asperellum and Phytophthora capsici in vitro[J]. Journal of Zhejiang University Science B, 2016, 17(4): 271-281.

@article{title="Antagonistic interaction between Trichoderma asperellum and Phytophthora capsici in vitro",
author="Heng Jiang, Liang Zhang, Jing-ze Zhang, Mohammad Reza Ojaghian, Kevin D. Hyde",
journal="Journal of Zhejiang University Science B",
volume="17",
number="4",
pages="271-281",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1500243"
}

%0 Journal Article
%T Antagonistic interaction between Trichoderma asperellum and Phytophthora capsici in vitro
%A Heng Jiang
%A Liang Zhang
%A Jing-ze Zhang
%A Mohammad Reza Ojaghian
%A Kevin D. Hyde
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 4
%P 271-281
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500243

TY - JOUR
T1 - Antagonistic interaction between Trichoderma asperellum and Phytophthora capsici in vitro
A1 - Heng Jiang
A1 - Liang Zhang
A1 - Jing-ze Zhang
A1 - Mohammad Reza Ojaghian
A1 - Kevin D. Hyde
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 4
SP - 271
EP - 281
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500243


Abstract: 
Phytophthora capsici is a phytopathogen that causes a destructive pepper blight that is extremely difficult to control. Using a fungicide application against the disease is costly and relatively ineffective and there is also a huge environmental concern about the use of such chemicals. The genus Trichoderma has been known to have a potential biocontrol issue. In this paper we investigate the mechanism for causing the infection of T. asperellum against P. capsici. Trichoderma sp. (isolate CGMCC 6422) was developed to have a strong antagonistic action against hyphae of P. capsici through screening tests. The strain was identified as T. asperellum through using a combination of morphological characteristics and molecular data. T. asperellum was able to collapse the mycelium of the colonies of the pathogen through dual culture tests by breaking down the pathogenic hyphae into fragments. The scanning electron microscope showed that the hyphae of T. asperellum surrounded and penetrated the pathogens hyphae, resulting in hyphal collapse. The results show that seven days after inoculation, the hyphae of the pathogen were completely degraded in a dual culture. T. asperellum was also able to enter the P. capsici oospores through using oogonia and then developed hyphae and produced conidia, leading to the disintegration of the oogonia and oospores. Seven days after inoculation, an average 10.8% of the oospores were infected, but at this stage, the structures of oospores were still intact. Subsequently, the number of infected oospores increased and the oospores started to collapse. Forty-two days after inoculation, almost all the oospores were infected, with 9.3% of the structures of the oospores being intact and 90.7% of the oospores having collapsed.

体外棘孢木霉与辣椒疫霉菌的拮抗互作

目的:筛选出对辣椒疫霉菌具有高效拮抗作用的木霉生防菌株,研究其对辣椒菌菌丝体和卵孢子的作用机制,评价其应用于辣椒疫病的生防潜力。
创新点:首次在超微结构水平上报道棘孢木霉菌菌丝能重寄生于辣椒疫霉菌的卵孢子,为木霉生防菌的应用提供了科学理论依据。
方法:从土壤中分离木霉菌株,采用对峙培养法筛选木霉生防菌株。通过形态学和多基因序列(ITStef1rpb2)进行鉴定,明确获得木霉菌株的种类。通过细胞学和超微结构观察,研究木霉生防菌对辣椒疫霉菌菌丝和卵孢子的拮抗机制。
结论:本研究筛选出了对辣椒疫霉菌菌丝具有高效拮抗作用的一个木霉菌株(CGMCC 6422),被鉴定为棘孢木霉菌(Trichoderma asperellum)。细胞学和超微结构显示,该菌株能塌陷辣椒疫霉菌的菌落,通过缠绕和穿透辣椒疫霉菌的菌丝体,引起菌丝体解体;首次观察到该菌株能侵染辣椒疫霉菌的卵孢子,并引起卵孢子完全降解。综上所述,筛选出的木霉生防菌株CGMCC 6422具有应用于防治辣椒疫病的生防潜力。

关键词:拮抗作用;电子显微镜;藏卵器;卵孢子;辣椒

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bell, D.K., Wells, H.D., Markham, C.R., 1982. In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology, 72(4):379-382.

[2]Benhamou, N., Chet, I., 1996. Parasitism of sclerotia of Sclerotium rolfsii by Trichoderma harzianum: ultrastructural and cytochemical aspects of the interaction. Biochem. Cell Biol., 86:405-415.

[3]Benítez, T., Rincón, A.M., Limón, M.C., et al., 2004. Biocontrol mechanisms of Trichoderma strains. Intern. Microbiol., 7:249-260.

[4]Boccas, B.R., 1981. Interspecific crosses between closely related heterothallic Phytophthora species. Phytopathology, 71(1):60-65.

[5]Carbone, I., Kohn, L.M., 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91(3):553-556.

[6]Chomnunti, P., Hongsanan, S., Aguirre-Hudson, B., et al., 2014. The sooty moulds. Fungal Divers., 66(1):1-36.

[7]Do, K.S., Kang, W.S., Park, E.W., 2012. A forecast model for the first occurrence of Phytophthora blight on chili pepper after overwintering. Plant Pathol. J., 28(2):172-184.

[8]Druzhinina, I.S., Kopchinskiy, A.G., Komoń, M., et al., 2005. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet. Biol., 42(10):813-828.

[9]Elad, Y., 1988. Ultrastructural scanning electron microscopy study of parasitism of Botrytis cinerea on flowers and fruit of cucumber. Trans. Br. Mycol. Soc., 97(1):185-190.

[10]Erwin, D.C., Ribeiro, O.K., 1996. Phytophthora Diseases Worldwide. American Phytopathological Society Press, St. Paul, MN, p.42-95, 262-268.

[11]Etxeberria, A., Mendarte, S., Larregla, S., 2011. Determination of viability of Phytophthora capsici oospores with the tetrazolium bromide staining test versus a plasmolysis method. Rev. Iberoam. Micol., 28(1):43-49.

[12]Ezziyyani, M., Requena, M.E., Egea-Gilabert, C., et al., 2007. Biological control of Phytophthora root rot of pepperchili using Trichoderma harzianum and Streptomyces rochei in combination. J. Phytopathol., 155(6):342-349.

[13]Fry, W.E., Goodwin, S.B., 1997. Resurgence of the Irish potato famine fungus. Bioscience, 47(6):363-371.

[14]Gupta, V.P., Tewari, S.K., Govindaiah, 1999. Ultrastructure of mycoparasitism of Trichoderma, Gliocladium and Laetisaria species on Botryodiplodia theobromae. J. Phytopathol., 147(1):19-24.

[15]Harman, G.E., 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96(2):190-194.

[16]Hemmes, D.E., Bartnicki-Garcia, S., 1975. Electron microscopy of gametangial interaction and oospore development in Phytophthora capsici. Arch. Microbiol., 103(1):91-112.

[17]Hord, M.J., Ristaino, J.B., 1991. Effects of physical and chemical factors on the germination of oospores of Phytophthora capsici in vitro. Phytopathology, 81(12):1541-1546.

[18]Jaklitsch , W.M., 2009. European species of Hypocrea. Part I. The green-spored species. Stud. Mycol., 63:1-91.

[19]Jaklitsch, W.M., 2011. European species of Hypocrea part II: species with hyaline ascospores. Fungal Divers, 48(1):1-250.

[20]Kaewchai, S., Soytong, K., Hyde, K.D., 2009. Mycofungicides and fungal biofertilizers. Fungal Divers, 38:25-50.

[21]Kexiang, G., Xiaoguang, L., Yonghong, L., et al., 2002. Potential of Trichoderma harzianum and T. atroviride to control Botryosphaeria berengeriana f. sp. piricola, the cause of apple ring rot. J. Phytopathol., 150(4-5):271-276.

[22]Kopchinskiy, A., Komon, M., Kubice, C.P., et al., 2005. TrichoBLAST: a multilocus database for Trichoderma and Hypocrea identifications. Mycol. Res., 109(06):658-660.

[23]Kuhajek, J.M., Jeffers, S.N., Slattery, M., et al., 2003. A rapid microbioassay for discovery of novel fungicides for Phytophthora spp. Phytopathology, 93(1):46-53.

[24]Kullnig-Gradinger, C.M., Szakacs, G., Kubicek, C.P., 2002. Phylogeny and evolution of the fungal genus Trichoderma: a multigene approach. Mycol. Res., 106(7):757-767.

[25]Lamour, K.H., Hausbeck, M.K., 2000. Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology, 90(4):396-400.

[26]Liu, L.N., Zhang, J.Z., Xu, T., 2009. Histopathological studies of sclerotia of Rhizoctonia solani parasitized by the EGFP transformant of Trichoderma virens. Lett. Appl. Microbiol., 49(6):745-750.

[27]Liu, Y.J., Whelen, S., Hall, B.D., 1999. Phylogenetic relationships among Ascomycetes: evidence from an RNA polymerase II subunit. Mol. Biol. Evol., 16(12):1799-1808.

[28]McDonald, B.A., Linde, C., 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol., 40(1):349-379.

[29]Osorio-Hernandez, E., Hernandez-Castillo, F.D., Gallegos-Morales, G., et al., 2011. In-vitro behavior of Trichoderma spp. against Phytophthora capsici Leonian. Afr. J. Agric. Res., 6(19):4594-4600.

[30]Papavizas, G.C., Bowers, J.H., Johnston, S.A., 1981. Selective isolation of Phytophthora capsici from soils. Phytopathology, 71(2):129-133.

[31]Parra, G.P., Ristaino, J.B., 1998. Insensitivity to Ridomil Gold (mefenoxam) found among field isolates of Phytophthora capsici causing Phytophthora blight on bell pepperchilis in North Carolina and New Jersey. Plant Dis., 82(6):711.

[32]Pennisi, A.M., Agosteo, G.E., Cacciola, S.O., et al., 1998. Insensitivity to metalaxyl among field isolates of Phytophthora capsici causing root and crown rot of pepperchili in southern Italy. Plant Dis., 82(11):1283.

[33]Qi, R.D., Wang, T., Li, P., et al., 2012. Distribution of mating types of Phytophthora capsici and inheritance in asexual progenies in Anhui Province. Acta Phytopathol. Sin., 42(1):45-50 (in Chinese).

[34]Reino, J.L., Guerrero, R.F., Hernández-Galán, R., et al., 2008. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem. Rev., 7(1):89-123.

[35]Ribeiro, O.K., Erwin, D.C., Zentmyer, G.A., 1975. An improved synthetic medium for oospore production and germination of several Phytophthora species. Mycologia, 67(5):1012-1019.

[36]Satour, M.M., Butler, E.E., 1968. Comparative morphological and physiological studies of the progenies from intraspecific matings of Phytophthora capsici. Phytopathology, 58:183-192.

[37]Sid Ahmed, A., Perez-Sanchez, C., Egea, C., et al., 1999. Evaluation of Trichoderma harzianum for controlling root rot caused by Phytophthora capsici in pepperchili plants. Plant Pathol., 48(1):58-65.

[38]Sid Ahmed, A., Ezziyyani, M., Sánchez, C.P., et al., 2003. Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper chili (Capsicum annuum) plants. Eur. J. Plant Pathol., 109(6):633-637.

[39]Thompson, J.D., Gibson, T.J., Plewniak, F., et al., 1997. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res., 25(24):4876-4882.

[40]White, T.J., Bruns, T., Lee, S., et al., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., et al. (Eds.), PCR Protocols: a Guide to Methods and Applications. Academic Press, New York, USA, p.315-322.

[41]Zhang, J.Z., Li, M.J., 2009. A new species of Bipolaris from the halophyte Sesuvium portulacastrum in Guangdong Province, China. Mycotaxon, 109(1):289-300.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE