Full Text:   <2790>

Summary:  <1579>

Suppl. Mater.: 

CLC number: Q93; S567

On-line Access: 2017-01-26

Received: 2015-01-28

Revision Accepted: 2016-05-08

Crosschecked: 2017-01-13

Cited: 5

Clicked: 4558

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ahmed Al-Harrasi

http://orcid.org/0000-0002-0815-5942

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.2 P.125-137

http://doi.org/10.1631/jzus.B1500271


Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress


Author(s):  Abdul Latif Khan, Syed Abdullah Gilani, Muhammad Waqas, Khadija Al-Hosni, Salima Al-Khiziri, Yoon-Ha Kim, Liaqat Ali, Sang-Mo Kang, Sajjad Asaf, Raheem Shahzad, Javid Hussain, In-Jung Lee, Ahmed Al-Harrasi

Affiliation(s):  UoN Chair of Oman’s Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa 616, Oman; more

Corresponding email(s):   ijlee@knu.ac.kr, aharrasi@unizwa.edu.om

Key Words:  Fungal endophytes, Diversity, Medicinal plants, Antioxidants, Indole acetic acid


Abdul Latif Khan, Syed Abdullah Gilani, Muhammad Waqas, Khadija Al-Hosni, Salima Al-Khiziri, Yoon-Ha Kim, Liaqat Ali, Sang-Mo Kang, Sajjad Asaf, Raheem Shahzad, Javid Hussain, In-Jung Lee, Ahmed Al-Harrasi. Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress[J]. Journal of Zhejiang University Science B, 2017, 18(2): 125-137.

@article{title="Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress",
author="Abdul Latif Khan, Syed Abdullah Gilani, Muhammad Waqas, Khadija Al-Hosni, Salima Al-Khiziri, Yoon-Ha Kim, Liaqat Ali, Sang-Mo Kang, Sajjad Asaf, Raheem Shahzad, Javid Hussain, In-Jung Lee, Ahmed Al-Harrasi",
journal="Journal of Zhejiang University Science B",
volume="18",
number="2",
pages="125-137",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1500271"
}

%0 Journal Article
%T Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress
%A Abdul Latif Khan
%A Syed Abdullah Gilani
%A Muhammad Waqas
%A Khadija Al-Hosni
%A Salima Al-Khiziri
%A Yoon-Ha Kim
%A Liaqat Ali
%A Sang-Mo Kang
%A Sajjad Asaf
%A Raheem Shahzad
%A Javid Hussain
%A In-Jung Lee
%A Ahmed Al-Harrasi
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 2
%P 125-137
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500271

TY - JOUR
T1 - Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress
A1 - Abdul Latif Khan
A1 - Syed Abdullah Gilani
A1 - Muhammad Waqas
A1 - Khadija Al-Hosni
A1 - Salima Al-Khiziri
A1 - Yoon-Ha Kim
A1 - Liaqat Ali
A1 - Sang-Mo Kang
A1 - Sajjad Asaf
A1 - Raheem Shahzad
A1 - Javid Hussain
A1 - In-Jung Lee
A1 - Ahmed Al-Harrasi
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 2
SP - 125
EP - 137
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500271


Abstract: 
medicinal plants have been used by marginal communities to treat various ailments. However, the potential of endophytes within these bio-prospective medicinal plants remains unknown. The present study elucidates the endophytic diversity of medicinal plants (Caralluma acutangula, Rhazya stricta, and Moringa peregrina) and the endophyte role in seed growth and oxidative stress. Various organs of medicinal plants yielded ten endophytes, which were identified as Phoma sp. (6 isolates), Alternaria sp. (2), Bipolaris sp. (1), and Cladosporium sp. (1) based on 18S rDNA sequencing and phylogenetic analysis. The culture filtrates (CFs; 25%, 50%, and 100% concentrations) from these endophytes were tested against the growth of normal and dwarf mutant rice lines. Endophytic CF exhibited dose-dependent growth stimulation and suppression effects. CF (100%) of Phoma sp. significantly increased rice seed germination and growth compared to controls and other endophytes. This growth-promoting effect was due to the presence of indole acetic acid in endophytic CF. The gas chromatography/mass spectrometry (GC/MS) analysis showed the highest indole acetic acid content ((54.31±0.21) µmol/L) in Bipolaris sp. In addition, the isolate of Bipolaris sp. exhibited significantly higher radical scavenging and anti-lipid peroxidation activity than the other isolates. Bipolaris sp. and Phoma sp. also exhibited significantly higher flavonoid and phenolic contents. The medicinal plants exhibited the presence of bio-prospective endophytic strains, which could be used for the improvement of crop growth and the mitigation of oxidative stresses.

药用植物内生菌对作物生长及氧化应激的作用

目的:探讨药用植物内生菌的多样性及其在种子生长和氧化应激中的作用。
方法:从三种药用植物(Caralluma acutangulaRhazya strictaMoringa peregrina)中提取内生菌;基于18S rDNA测序和系统发育分析鉴定分离得到的内生菌株;以正常和矮化突变体水稻品系为对照,比较不同浓度的内生菌培养滤液(CF)对水稻种子的发芽和生长的影响;通过气相色谱-质谱分析CF中的有效活性成分。
结论:从药用植物中共获得10种内生菌,包括茎点霉属6株、链格孢属2株、双极霉属1株和枝孢霉属1株。CF表现出剂量依赖性的生长刺激和抑制作用。与对照和其他内生菌相比,100%的茎点霉菌CF显著促进了水稻种子的发芽和生长;双极霉中的吲哚乙酸含量最高,并表现出比其更高的自由基清除和抗脂质过氧化活性;双极霉菌和茎点霉菌的类黄酮和酚类成分较高。综上所述,药用植物中存在内生菌株,其可以用于改善作物生长和减轻氧化应激。

关键词:真菌内生菌;多样性;药用植物;抗氧化剂;吲哚乙酸

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ansari, M.W., Trivedi, D.K., Sahoo, R.K., et al., 2013. A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops. Plant Physiol. Biochem., 70:403-410.

[2]Arnold, A.E., Lutzoni, F., 2007. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology, 88(3):541-549.

[3]Bajpai, V.K., Agrawal, P., Park, Y.H., 2014, Phytochemicals, antioxidant and anti-lipid peroxidation activities of ethanolic extract of a medicinal plant, Andrographis paniculata. J. Food Biochem., 38(6):584-591.

[4]Chen, J., Hu, K.X., Hou, X.Q., et al., 2011. Endophytic fungi assemblages from 10 Dendrobium medicinal plants (Orchidaceae). World J. Microbiol. Biotechnol., 27(5):1009-1016.

[5]Chutima, R., Lumyong, S., 2012. Production of indole-3-acetic acid by Thai native orchid-associated fungi. Symbiosis, 56(1):35-44.

[6]de Hoog, G.S., Horre, R., 2002. Molecular taxonomy of the Alternaria and Ulocladium species from humans and their identification in the routine laboratory. Mycoses, 45(7-8):259-276.

[7]Ding, X., Liu, K., Deng, B., et al., 2013. Isolation and characterization of endophytic fungi from Camptotheca acuminata. World J. Microbiol. Biotechnol., 29(10):1831-1838.

[8]Gao, J.M., Xiao, J., Zhang, Q., et al., 2014. Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal, antibacterial, antioxidant, and cytotoxic activities. J. Agric. Food Chem., 62(16):3584-3590.

[9]Garcia, A., Rhoden, S.A., Rubin-Filho, C.J., et al., 2012. Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L. and their localization by scanning electron microscopy. Biol. Res., 45(2):139-148.

[10]Ghimire, S.R., Charlton, N.D., Bell, J.D., et al., 2011. Biodiversity of fungal endophyte communities inhabiting switchgrass (Panicum virgatum L.) growing in the native tall grass prairie of northern Oklahoma. Fungal Div., 47(1):19-27.

[11]Ghosh, S., Derle, A., Ahire, M., et al., 2013. Phytochemical analysis and free radical scavenging activity of medicinal plants Gnidia glauca and Dioscorea bulbifera. PLoS ONE, 8(12):e82529.

[12]Gubiani, J.R., Zeraik, M.L., Oliveira, C.M., et al., 2014. Biologically active eremophilane-type sesquiterpenes from Camarops sp., an endophytic fungus isolated from Alibertia macrophylla. J. Nat. Prod., 77(3):668-672.

[13]Gulati, V., Harding, I.H., Palombo, E.A., 2012. Enzyme inhibitory and antioxidant activities of traditional medicinal plants: potential application in the management of hyperglycemia. BMC Comp. Alter. Med., 12:77.

[14]Hilbert, M., Voll, L.M., Ding, Y., et al., 2012. Indole derivative production by the root endophyte Piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots. New Phytol., 196(2):520-534.

[15]Huang, W.Y., Cai, Y.Z., Xing, J., et al., 2007. A potential antioxidant resource: endophytic fungi from medicinal plants. Econ. Bot., 61(1):14-30.

[16]Keerthi, M., Jumpponen, A., 2014. Unraveling the Dark Septate Endophyte Functions: Insights from the Arabidopsis Model. Advances in Endophytic Research. Springer India, p.115-141.

[17]Kende, H., 2001. Hormone response mutants: a plethora of surprises. Plant Physiol., 125(1):81-84.

[18]Khan, A.L., Hamayun, M., Kim, Y.H., et al., 2011. Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol. Biochem., 49(8):852-862.

[19]Khan, A.L., Hussain, J., Al-Harrasi, A., et al., 2013. Endophytic fungi: a source of gibberellins and crop resistance to abiotic stress. Crit. Rev. Biotech., 35(1):1-13.

[20]Kipkore, W., Wanjohi, B., Rono, H., et al., 2014. A study of the medicinal plants used by the Marakwet Community in Kenya. J. Ethnobiol. Ethnomed., 10(1):24.

[21]Kumar, D.S.S., Hyde, K.D., 2004. Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii. Fungal Divers., 17:69-90.

[22]Kusari, S., Singh, S., Jayabaskaran, C., 2014. Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol., 32(6):297-303.

[23]Liu, X., Dong, M., Chen, X., et al., 2007. Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem., 105(2):548-554.

[24]Mandyam, K.G., Roe, J., Jumpponen, A., 2013. Arabidopsis thaliana model system reveals a continuum of responses to root endophyte colonization. Fungal Biol., 117(4):250-260.

[25]Murphy, B.R., Doohan, F.M., Hodkinson, T.R., 2014. Yield increase induced by the fungal root endophyte Piriformospora indica in barley grown at low temperature is nutrient limited. Symbiosis, 62(1):29-39.

[26]Nalini, M.S., Sunayana, N., Prakash, H.S., 2014. Endophytic fungal diversity in medicinal plants of Western Ghats, India. Int. J. Biodiv., 2014:1-9.

[27]Nath, A., Chattopadhyay, A., Joshi, S.R., 2015. Biological activity of endophytic fungi of Rauwolfia serpentine Benth: an ethnomedicinal plant used in folk medicines in northeast India. PNAS, 85(1):233-240.

[28]Nishijima, T., Koshioka, M., Yamazaki, H., 1994. Use of several gibberellin biosynthesis inhibitors in sensitized rice seedling bioassays. Biosci. Biotechnol. Biochem., 58(3):572-573.

[29]Orlandelli, R.C., Alberto, R.N., Rubin Filho, C.J., et al., 2012. Diversity of endophytic fungal community associated with Piper hispidum (Piperaceae) leaves. Genet. Mol. Res., 11(2):1575-1585.

[30]Rai, M.R., Rathod, D., Agarkar, G., et al., 2014. Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture. Symbiosis, 62(2):63-79.

[31]Redman, R.S., Kim, Y.O., Woodward, C.J.D.A., et al., 2011. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE, 6(7):e14823.

[32]Reinhardt, D., Mandel, T., Kuhlemeier, C., 2000. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell, 12(4):507-518.

[33]Saeed, N., Khan, M.R., Shabbir, M., 2012. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Comp. Alter. Med., 12:221.

[34]Sakayaroj, Y., Preedanon, S., Supaphon, O., et al., 2010. Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Div., 42(1):27-45.

[35]Schulz, B., Boyle, C., 2005. The endophytic continuum. Mycol. Res., 109(6):661-686.

[36]Slinkard, K., Singleton, L., 1977. Total phenol analyses: automation and comparison with manual methods. Am. J. Enol. Vitic., 28:49-55.

[37]Strobel, G., Daisy, B., Castillo, U., et al., 2004. Natural products from endophytic microorganisms. J. Nat. Prod., 67(2):257-268.

[38]Tamura, K., Peterson, D., Peterson, N., et al., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 28(10):2731-2739.

[39]Tang, A.M.C., Jeewon, R., Hyde, K.D., 2009. A re-evaluation of the evolutionary relationships within the Xylariaceae based on ribosomal and protein-coding gene sequences. Fungal Div., 34:127-155.

[40]Thakur, A., Kaur, S., Kaur, A., et al., 2013. Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants. Environ. Entomol., 42(2):240-246.

[41]Torres, M.S., White, J.F.Jr., Zhang, X., et al., 2012. Endophyte-mediated adjustments in host morphology and physiology and effects on host fitness traits in grasses. Fungal Ecol., 5(3):322-330.

[42]Ullah, I., Khan, A.R., Park, G.S., et al., 2013. Analysis of phytohormones and phosphate solubilization in Photorhabdus spp. Food Sci. Biotechnol., 22(S1):25-31.

[43]Vadassery, V., Ritter, C., Venus, Y., et al., 2008. The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. MPMI, 21(10):1371-1383.

[44]Waller, F., Achatz, B., Baltruschat, H., et al., 2005. The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. PNAS, 102(38):13386-13391.

[45]Wang, L.W., Xu, B.G., Wang, J.Y., et al., 2012. Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. Appl. Microbiol. Biotechnol., 93(3):1231-1239.

[46]Waqas, M., Khan, A.L., Lee, I.J., 2014. Bioactive chemical constituents produced by endophytes and effects on rice plant growth. J. Plant Interact., 9(1):478-487.

[47]White, J.F.Jr., Torres, M.S., 2010. Is plant endophyte mediated defensive mutualism the result of oxidative stress protection? Physiol. Plant., 138(4):440-446.

[48]Xiao, J., Zhang, Q., Gao, Y.Q., et al., 2014. Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal, antibacterial, antioxidant, and cytotoxic activities. J. Agric. Food Chem., 62(16):3584-3590.

[49]Zhang, H., Xiong, H., Zhao, H., et al., 2013. An antimicrobial compound from the endophytic fungus Phoma sp. isolated from the medicinal plant Taraxacum mongolicum. J. Taiwan Inst. Chem. Eng., 44(2):177-181.

[50]Zhang, Y., Crous, P.W., Schoch, C.L., et al., 2011. Pleosporales. Fungal Div., 53(1):1-221.

[51]Zhao, J.T., Ma, D.H., Luo, M., et al., 2014. In vitro antioxidant activities and antioxidant enzyme activities in HepG2 cells and main active compounds of endophytic fungus from pigeon pea [Cajanus cajan (L.) Millsp.]. Food Res. Int., 56:243-251.

[52]List of electronic supplementary materials

[53]Fig. S1 Individual phylogenetic analysis of the 10 fungal endophytes isolated from medicinal plants

[54]Table S1 Location and length of 18S, 28S, 5.8S and ITS1, ITS2 sequences of various fungal strains

[55]Table S2 Estimates of evolutionary divergence between sequences

[56]Table S3 Sequence homology matrix of fungal strains

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE