Full Text:   <2660>

Summary:  <1778>

CLC number: S571.1

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-01-05

Cited: 1

Clicked: 4508

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Dong-mei Fan

http://orcid.org/0000-0001-7473-1357

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.2 P.99-108

http://doi.org/10.1631/jzus.B1600044


Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition


Author(s):  Dong-mei Fan, Kai Fan, Cui-ping Yu, Ya-ting Lu, Xiao-chang Wang

Affiliation(s):  Institute of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   fandongmei89@126.com, xcwang@zju.edu.cn

Key Words:  Tea polyphenol, Catechin, Decomposition, Nutrient release, Polyphenol/N ratio


Dong-mei Fan, Kai Fan, Cui-ping Yu, Ya-ting Lu, Xiao-chang Wang. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition[J]. Journal of Zhejiang University Science B, 2017, 18(2): 99-108.

@article{title="Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition",
author="Dong-mei Fan, Kai Fan, Cui-ping Yu, Ya-ting Lu, Xiao-chang Wang",
journal="Journal of Zhejiang University Science B",
volume="18",
number="2",
pages="99-108",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600044"
}

%0 Journal Article
%T Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition
%A Dong-mei Fan
%A Kai Fan
%A Cui-ping Yu
%A Ya-ting Lu
%A Xiao-chang Wang
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 2
%P 99-108
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600044

TY - JOUR
T1 - Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition
A1 - Dong-mei Fan
A1 - Kai Fan
A1 - Cui-ping Yu
A1 - Ya-ting Lu
A1 - Xiao-chang Wang
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 2
SP - 99
EP - 108
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600044


Abstract: 
Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols.

多酚控制茶树叶片短期分解过程的研究

目的:通过测定茶树叶片的分解速率及养分释放规律,研究茶多酚在茶树叶片分解过程中的作用。
创新点:测定了茶树叶片在茶园地表的分解速率和养分释放规律,并确定了茶多酚/氮素比值在茶树叶片短期分解过程中的主导作用。首次利用高效液相色谱法监测了分解过程中儿茶素的变化规律。
方法:采集成熟的茶树叶片,在室内风干后利用分解袋法测定其分解速率。分解袋放置于茶园地表用于模拟田间条件,逐月收集分解样品。实验结束后,测定各月份叶片的干重残留量、月均干重损失率、多酚等有机组分含量以及各元素含量。
结论:茶树叶片的干物质损失规律可以"两相分解模型"进行描述,茶多酚/氮素比值是调控分解速率的主要因素。分解过程中,茶多酚的转换十分迅速,同时儿茶素单体的结构影响其分解速率:大部分的儿茶素单体在分解初始两个月内迅速消失,没食子酸(GA)、儿茶素没食子酸酯(CG)、儿茶素(GC)在分解后期少量检出,而其他儿茶素已不在检测限内。茶树叶片中大量多酚的存在及其特有性质可能影响着叶片中的养分释放过程。

关键词:茶多酚;儿茶素;分解;养分释放;多酚/氮素比值

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Adair, E.C., Parton, W.J., del Grosso, S.J., et al., 2008. Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Global Change Biol., 14(11):2636-2660.

[2]Aerts, R., 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79(3):439-449.

[3]AOAC (Association of Official Analytical Chemists), 2000. Official Methods of Analysis of AOAC, 17th Ed. AOAC International, Gaitherburg, MD, USA.

[4]Berg, B., 2014. Decomposition patterns for foliar litter— a theory for influencing factors. Soil Biol. Biochem., 78:222-232.

[5]Berg, B., Cortina, J., 1995. Nutrient dynamics in some decomposing leaf and needle litter types in a Pinus sylvestris forest. Scand. J. Forest Res., 10(1-4):1-11.

[6]Berg, B., McClaugherty, C., 2003. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer-Verlag Heidelberg, Berlin, Germany.

[7]Berg, B., McClaugherty, C., Johansson, M.B., 1993. Litter mass-loss rates in late stages of decomposition at some climatically and nutritionally different pine sites. Long-term decomposition in a Scots pine forest. VIII. Can. J. Bot., 71(5):680-692.

[8]Bocock, K.L., Gilbert, O.J.W., 1957. The disappearance of leaf litter under different woodland conditions. Plant Soil, 9(2):179-185.

[9]Chadwick, D.R., Ineson, P., Woods, C., et al., 1998. Decomposition of Pinus sylvestris litter in litter bags: influence of underlying native litter layer. Soil Biol. Biochem., 30(1):47-55.

[10]Chen, Z.M., Lin, Z., 2015. Tea and human health: biomedical functions of tea active components and current issues. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(1):87-102.

[11]Cooke, R.C., Whipps, J.M., 1993. Ecophysiology of Fungi. Blackwell Scientific Publications.

[12]CouˆTeaux, M.M., Bottner, P., et al., 1995. Litter decomposition, climate and liter quality. Trends Ecol. Evol., 10(2):63-66.

[13]Dziadowiec, H., 1987. The decomposition of plant litter fall in an oak-linden-hornbeam forest and an oak-pine mixed forest of the Białowieża National Park. Acta Soc. Bot. Pol., 56(1):169.

[14]Fahey, T.J., Hughes, J.W., Pu, M., et al., 1988. Root decomposition and nutrient flux following whole-tree harvest of northern hardwood forest. Forest Sci., 34(3):744-768.

[15]Findlay, S., Carreiro, M., Krischik, V., et al., 1996. Effects of damage to living plants on leaf litter quality. Ecol. Appl., 6(1):269-275.

[16]Fox, R.H., Myers, R.J.K., Vallis, I., 1990. The nitrogen mineralization rate of legume residues in soil as influenced by their polyphenol, lignin, and nitrogen contents. Plant Soil, 129(2):251-259.

[17]Fujii, S., Takeda, H., 2010. Dominant effects of litter substrate quality on the difference between leaf and root decomposition process above and belowground. Soil Biol. Biochem., 42(12):2224-2230.

[18]Grandy, A.S., Erich, M.S., Porter, G.A., 2000. Suitability of the anthrone–sulfuric acid reagent for determining water soluble carbohydrates in soil water extracts. Soil Biol. Biochem., 32(5):725-727.

[19]Hättenschwiler, S., Vitousek, P.M., 2000. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol. Evol., 15(6):238-243.

[20]Heimler, D., Vignolini, P., Dini, M.G., et al., 2006. Antiradical activity and polyphenol composition of local Brassicaceae edible varieties. Food Chem., 99(3):464-469.

[21]Johansson, M.B., 1993. Biomass, decomposition and nutrient release of vaccinium myrtillus leaf litter in four forest stands. Scand. J. Forest Res., 8(1-4):466-479.

[22]Kurokawa, H., Nakashizuka, T., 2008. Leaf herbivory and decomposability in a Malaysian tropical rain forest. Ecology, 89(9):2645-2656.

[23]Laskowski, R., Maryanski, M., Niklinska, M., 1995a. Changes in the chemical composition of water percolating through the soil profile in a moderately polluted catchment. Water Air Soil Poll., 85(3):1759-1764.

[24]Laskowski, R., Niklinska, M., Maryanski, M., 1995b. The dynamics of chemical-elements in forest litter. Ecology, 76(5):1393-1406.

[25]Liang, Y.R., Liu, Z., Xu, Y.R., et al., 1990. A study on chemical composition of two special green teas (Camellia sinensis). J. Sci. Food Agric., 53(4):541-548.

[26]Marschner, H., Rimmington, G., 1988. Mineral nutrition of higher plants. Plant Cell Environ., 11(2):147-148.

[27]McClaugherty, C.A., Pastor, J., Aber, J.D., et al., 1985. Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology, 66(1):266-275.

[28]Meentemeyer, V., 1978. Macroclimate and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 59(3):465-472.

[29]Melillo, J., Aber, J., Linkins, A., et al., 1989. Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant Soil, 115(2):189-198.

[30]Melillo, J.M., Aber, J.D., Muratore, J.F., 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63(3):621-626.

[31]Mesquita, R.D., Workman, S.W., Neely, C.L., 1998. Slow litter decomposition in a cecropia-dominated secondary forest of central Amazonia. Soil Biol. Biochem., 30(2):167-175.

[32]Moore, T.R., Trofymow, J.A., Taylor, B., et al., 1999. Litter decomposition rates in Canadian forests. Global Change Biol., 5(1):75-82.

[33]Northup, R.R., Dahlgren, R.A., McColl, J.G., 1998. Polyphenols as regulators of plant-litter-soil interactions in northern California’s pygmy forest: a positive feedback? Biogeochemistry, 42(1-2):189-220.

[34]Oglesby, K.A., Fownes, J.H., 1992. Effects of chemical-composition on nitrogen mineralization from green manures of 7 tropical leguminous trees. Plant Soil, 143(1):127-132.

[35]Olsen, S.R., Cole, C.V., Watanabe, F.S., et al., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture Circular 939, Washington.

[36]Osono, T., Takeda, H., 2004a. Accumulation and release of nitrogen and phosphorus in relation to lignin decomposition in leaf litter of 14 tree species. Ecol. Res., 19(6):593-602.

[37]Osono, T., Takeda, H., 2004b. Potassium, calcium, and magnesium dynamics during litter decomposition in a cool temperate forest. J. Forest Res., 9(1):23-31.

[38]Palm, C.A., Sanchez, P.A., 1990. Decomposition and nutrient release patterns of the leaves of three tropical legumes. Biotropica, 22(4):330-338.

[39]Palm, C.A., Sanchez, P.A., 1991. Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolic contents. Soil Biol. Biochem., 23(1):83-88.

[40]Palm, C.A., Rowland, A.P., 1997. A minimum dataset for characterization of plant quality for decomposition. In: Cadisch, G., Giller, K.E. (Eds.), Driven by Nature: Plant Litter Quality and Decomposition. CAB International, Wallingford, p.379-393.

[41]Parton, W., Silver, W.L., Burke, I.C., et al., 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315(5810):361-364.

[42]Peng, Q., Qi, Y., Dong, Y., et al., 2014. Decomposing litter and the C and N dynamics as affected by N additions in a semi-arid temperate steppe, Inner Mongolia of China. J. Arid. Land, 6(4):432-444.

[43]Preston, C.M., Trofymow, J.A., The Canadian Intersite Decomposition Experiment Working Group, 2000. Variability in litter quality and its relationship to litter decay in Canadian forests. Can. J. Bot., 78(10):1269-1287.

[44]Ruan, J.Y., Wang, G.Q., Shi, Y.Z., et al., 2003. Aluminium in tea soils, rhizosphere soil and the characteristics of Al uptake by tea plant. J. Tea Sci., 23(z1):16-20 (in Chinese).

[45]Schmidt, M.A., Kreinberg, A.J., Gonzalez, J.M., et al., 2013. Soil microbial communities respond differently to three chemically defined polyphenols. Plant Physiol. Biochem., 72:190-197.

[46]Silver, W.L., Miya, R.K., 2001. Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia, 129(3):407-419.

[47]Sinsabaugh, R.L., Linkins, A., 1989. Ellulase mobility in decomposing leaf litter. Soil Biol. Biochem., 21(2):205-209.

[48]Swift, M.J., Heal, O.W., Anderson, J.M., 1979. Decomposition in Terrestrial Ecosystems. Blackwell Scientific Publications, Oxford, London.

[49]Taylor, B.R., Parkinson, D., Parsons, W.F.J., 1989. Nitrogen and lignin content as predictors of litter decay-rates—a microcosm test. Ecology, 70(1):97-104.

[50]Tharayil, N., Alpert, P., Bhowmik, P., et al., 2013. Phenolic inputs by invasive species could impart seasonal variations in nitrogen pools in the introduced soils: a case study with polygonum cuspidatum. Soil Biol. Biochem., 57:858-867.

[51]Trofymow, J.A., Moore, T.R., Titus, B., et al., 2002. Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can. J. Forest Res., 32(5):789-804.

[52]Valus, L., Jones, R.J., 1973. Net mineralization of nitrogen in leaves and leaf litter of desmodium intortum and phaseolus atropurpureus mixed with soil. Soil Biol. Biochem., 5(4):391-398.

[53]Wan, X., 2008. Tea Biochemistry. China Agriculture Press, Beijing, p.9-15 (in Chinese).

[54]Wang, J., Liu, L., Wang, X., et al., 2015. The interaction between abiotic photodegradation and microbial decomposition under ultraviolet radiation. Global Change Biol., 21(5):2095-2104.

[55]Winder, R.S., Lamarche, J., Constabel, C.P., et al., 2013. The effects of high-tannin leaf litter from transgenic poplars on microbial communities in microcosm soils. Front. Microbiol., 4:1-10.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE