CLC number: S571.1
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-01-05
Cited: 1
Clicked: 4508
Dong-mei Fan, Kai Fan, Cui-ping Yu, Ya-ting Lu, Xiao-chang Wang. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition[J]. Journal of Zhejiang University Science B, 2017, 18(2): 99-108.
@article{title="Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition",
author="Dong-mei Fan, Kai Fan, Cui-ping Yu, Ya-ting Lu, Xiao-chang Wang",
journal="Journal of Zhejiang University Science B",
volume="18",
number="2",
pages="99-108",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600044"
}
%0 Journal Article
%T Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition
%A Dong-mei Fan
%A Kai Fan
%A Cui-ping Yu
%A Ya-ting Lu
%A Xiao-chang Wang
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 2
%P 99-108
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600044
TY - JOUR
T1 - Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition
A1 - Dong-mei Fan
A1 - Kai Fan
A1 - Cui-ping Yu
A1 - Ya-ting Lu
A1 - Xiao-chang Wang
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 2
SP - 99
EP - 108
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600044
Abstract: Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols.
[1]Adair, E.C., Parton, W.J., del Grosso, S.J., et al., 2008. Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Global Change Biol., 14(11):2636-2660.
[2]Aerts, R., 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79(3):439-449.
[3]AOAC (Association of Official Analytical Chemists), 2000. Official Methods of Analysis of AOAC, 17th Ed. AOAC International, Gaitherburg, MD, USA.
[4]Berg, B., 2014. Decomposition patterns for foliar litter— a theory for influencing factors. Soil Biol. Biochem., 78:222-232.
[5]Berg, B., Cortina, J., 1995. Nutrient dynamics in some decomposing leaf and needle litter types in a Pinus sylvestris forest. Scand. J. Forest Res., 10(1-4):1-11.
[6]Berg, B., McClaugherty, C., 2003. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer-Verlag Heidelberg, Berlin, Germany.
[7]Berg, B., McClaugherty, C., Johansson, M.B., 1993. Litter mass-loss rates in late stages of decomposition at some climatically and nutritionally different pine sites. Long-term decomposition in a Scots pine forest. VIII. Can. J. Bot., 71(5):680-692.
[8]Bocock, K.L., Gilbert, O.J.W., 1957. The disappearance of leaf litter under different woodland conditions. Plant Soil, 9(2):179-185.
[9]Chadwick, D.R., Ineson, P., Woods, C., et al., 1998. Decomposition of Pinus sylvestris litter in litter bags: influence of underlying native litter layer. Soil Biol. Biochem., 30(1):47-55.
[10]Chen, Z.M., Lin, Z., 2015. Tea and human health: biomedical functions of tea active components and current issues. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(1):87-102.
[11]Cooke, R.C., Whipps, J.M., 1993. Ecophysiology of Fungi. Blackwell Scientific Publications.
[12]CouˆTeaux, M.M., Bottner, P., et al., 1995. Litter decomposition, climate and liter quality. Trends Ecol. Evol., 10(2):63-66.
[13]Dziadowiec, H., 1987. The decomposition of plant litter fall in an oak-linden-hornbeam forest and an oak-pine mixed forest of the Białowieża National Park. Acta Soc. Bot. Pol., 56(1):169.
[14]Fahey, T.J., Hughes, J.W., Pu, M., et al., 1988. Root decomposition and nutrient flux following whole-tree harvest of northern hardwood forest. Forest Sci., 34(3):744-768.
[15]Findlay, S., Carreiro, M., Krischik, V., et al., 1996. Effects of damage to living plants on leaf litter quality. Ecol. Appl., 6(1):269-275.
[16]Fox, R.H., Myers, R.J.K., Vallis, I., 1990. The nitrogen mineralization rate of legume residues in soil as influenced by their polyphenol, lignin, and nitrogen contents. Plant Soil, 129(2):251-259.
[17]Fujii, S., Takeda, H., 2010. Dominant effects of litter substrate quality on the difference between leaf and root decomposition process above and belowground. Soil Biol. Biochem., 42(12):2224-2230.
[18]Grandy, A.S., Erich, M.S., Porter, G.A., 2000. Suitability of the anthrone–sulfuric acid reagent for determining water soluble carbohydrates in soil water extracts. Soil Biol. Biochem., 32(5):725-727.
[19]Hättenschwiler, S., Vitousek, P.M., 2000. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol. Evol., 15(6):238-243.
[20]Heimler, D., Vignolini, P., Dini, M.G., et al., 2006. Antiradical activity and polyphenol composition of local Brassicaceae edible varieties. Food Chem., 99(3):464-469.
[21]Johansson, M.B., 1993. Biomass, decomposition and nutrient release of vaccinium myrtillus leaf litter in four forest stands. Scand. J. Forest Res., 8(1-4):466-479.
[22]Kurokawa, H., Nakashizuka, T., 2008. Leaf herbivory and decomposability in a Malaysian tropical rain forest. Ecology, 89(9):2645-2656.
[23]Laskowski, R., Maryanski, M., Niklinska, M., 1995a. Changes in the chemical composition of water percolating through the soil profile in a moderately polluted catchment. Water Air Soil Poll., 85(3):1759-1764.
[24]Laskowski, R., Niklinska, M., Maryanski, M., 1995b. The dynamics of chemical-elements in forest litter. Ecology, 76(5):1393-1406.
[25]Liang, Y.R., Liu, Z., Xu, Y.R., et al., 1990. A study on chemical composition of two special green teas (Camellia sinensis). J. Sci. Food Agric., 53(4):541-548.
[26]Marschner, H., Rimmington, G., 1988. Mineral nutrition of higher plants. Plant Cell Environ., 11(2):147-148.
[27]McClaugherty, C.A., Pastor, J., Aber, J.D., et al., 1985. Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology, 66(1):266-275.
[28]Meentemeyer, V., 1978. Macroclimate and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 59(3):465-472.
[29]Melillo, J., Aber, J., Linkins, A., et al., 1989. Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant Soil, 115(2):189-198.
[30]Melillo, J.M., Aber, J.D., Muratore, J.F., 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63(3):621-626.
[31]Mesquita, R.D., Workman, S.W., Neely, C.L., 1998. Slow litter decomposition in a cecropia-dominated secondary forest of central Amazonia. Soil Biol. Biochem., 30(2):167-175.
[32]Moore, T.R., Trofymow, J.A., Taylor, B., et al., 1999. Litter decomposition rates in Canadian forests. Global Change Biol., 5(1):75-82.
[33]Northup, R.R., Dahlgren, R.A., McColl, J.G., 1998. Polyphenols as regulators of plant-litter-soil interactions in northern California’s pygmy forest: a positive feedback? Biogeochemistry, 42(1-2):189-220.
[34]Oglesby, K.A., Fownes, J.H., 1992. Effects of chemical-composition on nitrogen mineralization from green manures of 7 tropical leguminous trees. Plant Soil, 143(1):127-132.
[35]Olsen, S.R., Cole, C.V., Watanabe, F.S., et al., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture Circular 939, Washington.
[36]Osono, T., Takeda, H., 2004a. Accumulation and release of nitrogen and phosphorus in relation to lignin decomposition in leaf litter of 14 tree species. Ecol. Res., 19(6):593-602.
[37]Osono, T., Takeda, H., 2004b. Potassium, calcium, and magnesium dynamics during litter decomposition in a cool temperate forest. J. Forest Res., 9(1):23-31.
[38]Palm, C.A., Sanchez, P.A., 1990. Decomposition and nutrient release patterns of the leaves of three tropical legumes. Biotropica, 22(4):330-338.
[39]Palm, C.A., Sanchez, P.A., 1991. Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolic contents. Soil Biol. Biochem., 23(1):83-88.
[40]Palm, C.A., Rowland, A.P., 1997. A minimum dataset for characterization of plant quality for decomposition. In: Cadisch, G., Giller, K.E. (Eds.), Driven by Nature: Plant Litter Quality and Decomposition. CAB International, Wallingford, p.379-393.
[41]Parton, W., Silver, W.L., Burke, I.C., et al., 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315(5810):361-364.
[42]Peng, Q., Qi, Y., Dong, Y., et al., 2014. Decomposing litter and the C and N dynamics as affected by N additions in a semi-arid temperate steppe, Inner Mongolia of China. J. Arid. Land, 6(4):432-444.
[43]Preston, C.M., Trofymow, J.A., The Canadian Intersite Decomposition Experiment Working Group, 2000. Variability in litter quality and its relationship to litter decay in Canadian forests. Can. J. Bot., 78(10):1269-1287.
[44]Ruan, J.Y., Wang, G.Q., Shi, Y.Z., et al., 2003. Aluminium in tea soils, rhizosphere soil and the characteristics of Al uptake by tea plant. J. Tea Sci., 23(z1):16-20 (in Chinese).
[45]Schmidt, M.A., Kreinberg, A.J., Gonzalez, J.M., et al., 2013. Soil microbial communities respond differently to three chemically defined polyphenols. Plant Physiol. Biochem., 72:190-197.
[46]Silver, W.L., Miya, R.K., 2001. Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia, 129(3):407-419.
[47]Sinsabaugh, R.L., Linkins, A., 1989. Ellulase mobility in decomposing leaf litter. Soil Biol. Biochem., 21(2):205-209.
[48]Swift, M.J., Heal, O.W., Anderson, J.M., 1979. Decomposition in Terrestrial Ecosystems. Blackwell Scientific Publications, Oxford, London.
[49]Taylor, B.R., Parkinson, D., Parsons, W.F.J., 1989. Nitrogen and lignin content as predictors of litter decay-rates—a microcosm test. Ecology, 70(1):97-104.
[50]Tharayil, N., Alpert, P., Bhowmik, P., et al., 2013. Phenolic inputs by invasive species could impart seasonal variations in nitrogen pools in the introduced soils: a case study with polygonum cuspidatum. Soil Biol. Biochem., 57:858-867.
[51]Trofymow, J.A., Moore, T.R., Titus, B., et al., 2002. Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can. J. Forest Res., 32(5):789-804.
[52]Valus, L., Jones, R.J., 1973. Net mineralization of nitrogen in leaves and leaf litter of desmodium intortum and phaseolus atropurpureus mixed with soil. Soil Biol. Biochem., 5(4):391-398.
[53]Wan, X., 2008. Tea Biochemistry. China Agriculture Press, Beijing, p.9-15 (in Chinese).
[54]Wang, J., Liu, L., Wang, X., et al., 2015. The interaction between abiotic photodegradation and microbial decomposition under ultraviolet radiation. Global Change Biol., 21(5):2095-2104.
[55]Winder, R.S., Lamarche, J., Constabel, C.P., et al., 2013. The effects of high-tannin leaf litter from transgenic poplars on microbial communities in microcosm soils. Front. Microbiol., 4:1-10.
Open peer comments: Debate/Discuss/Question/Opinion
<1>