Full Text:   <1599>

Summary:  <1392>

CLC number: Q78; G35

On-line Access: 2016-10-02

Received: 2016-08-12

Revision Accepted: 2016-08-28

Crosschecked: 2016-09-11

Cited: 1

Clicked: 3172

Citations:  Bibtex RefMan EndNote GB/T7714


Quan-sheng Du


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2016 Vol.17 No.10 P.798-806


Visualization analysis of CRISPR/Cas9 gene editing technology studies

Author(s):  Quan-sheng Du, Jie Cui, Chun-jie Zhang, Ke He

Affiliation(s):  Department of Life Sciences, National Natural Science Foundation of China, Beijing 100085, China; more

Corresponding email(s):   duqs@nsfc.gov.cn

Key Words:  CRISPR/Cas9, CiteSpaceV, Visualization analysis

Quan-sheng Du, Jie Cui, Chun-jie Zhang, Ke He. Visualization analysis of CRISPR/Cas9 gene editing technology studies[J]. Journal of Zhejiang University Science B, 2016, 17(10): 798-806.

@article{title="Visualization analysis of CRISPR/Cas9 gene editing technology studies",
author="Quan-sheng Du, Jie Cui, Chun-jie Zhang, Ke He",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Visualization analysis of CRISPR/Cas9 gene editing technology studies
%A Quan-sheng Du
%A Jie Cui
%A Chun-jie Zhang
%A Ke He
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 10
%P 798-806
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1601985

T1 - Visualization analysis of CRISPR/Cas9 gene editing technology studies
A1 - Quan-sheng Du
A1 - Jie Cui
A1 - Chun-jie Zhang
A1 - Ke He
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 10
SP - 798
EP - 806
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1601985

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system is an adaptive immune defense system that resists the invasion of viruses and plasmids heterologous genetic material in bacteria and archaea. Taking the literature related to gene editing technology of CRISPR/Cas9 from the Web of Science database from 2002 to 2015, we use the software citeSpaceV to analyze co-cited literature in order to establish the research hotspots and fronts recently in this field by knowledge mapping.


方法:基于Web of Science数据库中2002年至2015年有关基因编辑技术CRISPR/Cas9的文献资料为研究对象。利用信息可视化软件CiteSpaceV进行共被引文献分析,以知识图谱方式展现该领域近年来的研究热点和前沿。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Barrangou, R., Fremaux, C., Deveau, H., et al., 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819):1709-1712.

[2]Bolotin, A., Ouinquis, B., Sorokin, A., et al., 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151(8):2551-2561.

[3]Brandes, U., 2001. A faster algorithm for betweenness centrality. J. Math. Sociol., 25(2):163-177.

[4]Brouns, S.J., Jore, M.M., Lundgren, M., et al., 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321(5891):960-964.

[5]Chen, C.M., 2004. Searching for intellectual turning points: progressive knowledge domain visualization. PNAS, 101(Suppl. 1):5303-5310.

[6]Chen, C.M., 2005. The centrality of pivotal points in the evolution of scientific networks. IUI '05 Proceedings of the 10th International Conference on Intelligent User Interfaces, San Diego, California, USA. ACM, New York, USA, p.98-105.

[7]Chen, C.M., 2006. Citespace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inform. Sci. Technol., 57(3):359-377.

[8]Chen, C.M., 2012. Predictive effects of structural variation on citation counts. J. Am. Soc. Inform. Sci. Technol., 63(3):431-449.

[9]Chen, C.M., Leydesdorff, L., 2014. Patterns of connections and movements in dual-map overlays: a new method of publication portfolio analysis. J. Assoc. Inform. Sci. Technol., 65(2):334-351.

[10]Chen, C.M., Ibekwe-sanjuan, F., Hou, J.H., 2010. The structure and dynamics of cocitation clusters: a multiple-perspective cocitation analysis. J. Am. Soc. Inform. Sci. Technol., 61(7):1386-1409.

[11]Cong, L., Ran, F.A., Cox, D., et al., 2013. Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121):819-823.

[12]Freeman, L.C., 1977. A set of measuring centrality based on betweenness. Sociometry, 40(1):35-41.

[13]Haft, D.H., Selengut, J., Mongodin, E.F., et al., 2005. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLOS Comput. Biol., 1(6):e60.

[14]Hale, C.R., Zhao, P., Olson, S., et al., 2009. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell, 139(5):945-956.

[15]Ishino, Y., Shinagawa, H., Makino, K., et al., 1987. Nucleotide-sequence of the iap gene, responsible for alkaline-phosphatase isozyme conversion in Escherichia-coli, and identification of the gene product. J. Bacteriol., 169(12):5429-5433.

[16]Jansen, R., van Embden, J.D.A., Gaastra, W., et al., 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol., 43(6):1565-1575.

[17]Jinek, M., Chylinski, K., Fonfara, I., et al., 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096):816-821.

[18]Karginov, F.V., Hannon, G.J., 2010. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol. Cell, 37(1):7-19.

[19]Makarova, K.S., Grishin, N.V., Shabalina, S.A., et al., 2006. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct., 1(7):1-26.

[20]Mali, P., Yang, L.H., Esvelt, K.M., et al., 2013. RNA-guided human genome engineering via Cas9. Science, 339(6121):823-826.

[21]Malina, A., Mills, J.R., Cencic, R., et al., 2013. Repurposing CRISPR/Cas9 for in situ functional assays. Gene. Dev., 27(23):2602-2614.

[22]Marraffini, L.A., Sontheimer, E.J., 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 322(5909):1843-1845.

[23]Mojica, F.J., Diez-Villasenor, C., Soria, E., et al., 2000. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol., 36(1):244-246.

[24]Mojica, F.J.M., Díez-Villaseñor, C., García-Martínez, J., et al., 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol., 60(2):174-182.

[25]Nakata, A., Amemura, M., Makino, K., 1989. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J. Bacteriol., 171(6):3553-3556.

[26]Newman, M.E., 2006. Modularity and community structure in networks. PNAS, 103(23):8577-8582.

[27]Rousseeuw, P.J., 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math., 20:53-65.

[28]Saunders, N.F.W., Goodchild, A., Raftery, M., et al., 2005. Predicted roles for hypothetical proteins in the low-temperature expressed proteome of the Antarctic archaeon Methanococcoides burtonii. J. Proteome Res., 4(2):464-472.

[29]Stern, A., Keren, L., Wurtzel, O., et al., 2010. Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet., 26(8):335-340.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE