Full Text:   <1440>

Summary:  <1427>

Suppl. Mater.: 

CLC number: S512.3; Q943.2

On-line Access: 2020-03-02

Received: 2019-06-22

Revision Accepted: 2019-09-25

Crosschecked: 2019-12-20

Cited: 0

Clicked: 9338

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2020 Vol.21 No.2 P.93-121

http://doi.org/10.1631/jzus.B1900400


Salinity tolerance in barley during germination— homologs and potential genes#


Author(s):  Edward Mwando, Tefera Tolera Angessa, Yong Han, Chengdao Li

Affiliation(s):  Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia; more

Corresponding email(s):   c.li@murdoch.edu.au

Key Words:  Genetics, Barley, Quantitative trait locus (QTL), Germination, Salinity tolerance, Homologous gene, Diversity


Share this article to: More |Next Article >>>

Edward Mwando, Tefera Tolera Angessa, Yong Han, Chengdao Li. Salinity tolerance in barley during germination— homologs and potential genes#[J]. Journal of Zhejiang University Science B, 2020, 21(2): 93-121.

@article{title="Salinity tolerance in barley during germination— homologs and potential genes#",
author="Edward Mwando, Tefera Tolera Angessa, Yong Han, Chengdao Li",
journal="Journal of Zhejiang University Science B",
volume="21",
number="2",
pages="93-121",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1900400"
}

%0 Journal Article
%T Salinity tolerance in barley during germination— homologs and potential genes#
%A Edward Mwando
%A Tefera Tolera Angessa
%A Yong Han
%A Chengdao Li
%J Journal of Zhejiang University SCIENCE B
%V 21
%N 2
%P 93-121
%@ 1673-1581
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1900400

TY - JOUR
T1 - Salinity tolerance in barley during germination— homologs and potential genes#
A1 - Edward Mwando
A1 - Tefera Tolera Angessa
A1 - Yong Han
A1 - Chengdao Li
J0 - Journal of Zhejiang University Science B
VL - 21
IS - 2
SP - 93
EP - 121
%@ 1673-1581
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1900400


Abstract: 
Salinity affects more than 6% of the world’s total land area, causing massive losses in crop yield. Salinity inhibits plant growth and development through osmotic and ionic stresses; however, some plants exhibit adaptations through osmotic regulation, exclusion, and translocation of accumulated Na+ or Cl. Currently, there are no practical, economically viable methods for managing salinity, so the best practice is to grow crops with improved tolerance. germination is the stage in a plant’s life cycle most adversely affected by salinity. barley, the fourth most important cereal crop in the world, has outstanding salinity tolerance, relative to other cereal crops. Here, we review the genetics of salinity tolerance in barley during germination by summarizing reported quantitative trait loci (QTLs) and functional genes. The homologs of candidate genes for salinity tolerance in Arabidopsis, soybean, maize, wheat, and rice have been blasted and mapped on the barley reference genome. The genetic diversity of three reported functional gene families for salt tolerance during barley germination, namely dehydration-responsive element-binding (DREB) protein, somatic embryogenesis receptor-like kinase and aquaporin genes, is discussed. While all three gene families show great diversity in most plant species, the DREB gene family is more diverse in barley than in wheat and rice. Further to this review, a convenient method for screening for salinity tolerance at germination is needed, and the mechanisms of action of the genes involved in salt tolerance need to be identified, validated, and transferred to commercial cultivars for field production in saline soil.

大麦芽期耐盐相关的同源和候选基因

概要:土壤盐害影响了全球6%以上的陆地面积,并导致了大量的农作物减产.盐害主要通过渗透和离子胁迫抑制植物的生长和发育,而植物相应地通过渗透调节、转移或外排积累的钠和氯离子以增强适应性.目前,生产上尚未有实用、经济的方法治理盐害,因而最为可行的途径是增强植物自身的耐盐性.盐胁迫严重抑制种子萌发,而作为全球第四大禾谷类作物的大麦与其他谷物相比耐盐性更强.本文综述了大麦芽期耐盐性的遗传机制,总结了已报道的相关数量性状位点和功能基因,比对了拟南芥、大豆、玉米、小麦和水稻中耐盐候选基因在大麦中的同源基因并映射到参考基因组.此外,本文还讨论了三个耐盐功能基因家族的遗传多样性,包括脱水应答元件结合蛋白(DREB)、类体细胞胚胎发生受体激酶和水通道蛋白.上述三个基因家族在植物中都存在丰富的多样性,但DREB家族在大麦中的多样性高于水稻和小麦.后续研究中,芽期耐盐性的简便筛选方法仍有待开发,耐盐基因及相关机理机制仍需鉴定、验证,并整合到栽培品种中,以实现盐土上作物的生产.
关键词:遗传;大麦;数量性状位点;发芽;耐盐性;同源基因;多样性

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abido WAE, Allem A, Zsombic L, et al., 2019. Effect of gibberellic acid on germination of six wheat cultivars under salinity stress levels. Asian J Biol Sci, 12(1):51-60.

[2]Abrol IP, Yadav JSP, Massoud FI, 1988. Salt-Affected Soils and Their Management. FAO Soils Bulletin 39, Food and Agriculture Organization of the United Nations, Rome.

[3]Agarwal PK, Jha B, 2010. Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant, 54(2):201-212.

[4]Agarwal PK, Agarwal P, Reddy MK, et al., 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep, 25(12):1263-1274.

[5]Agarwal PK, Shukla PS, Gupta K, et al., 2013. Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol, 54(1):102-123.

[6]Ahmed IM, Cao FB, Zhang M, et al., 2013a. Difference in yield and physiological features in response to drought and salinity combined stress during anthesis in Tibetan wild and cultivated barleys. PLoS ONE, 8(10):e77869.

[7]Ahmed IM, Dai HX, Zheng WT, et al., 2013b. Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol Biochem, 63:49-60.

[8]Alavilli H, Awasthi JP, Rout GR, et al., 2016. Overexpression of a barley aquaporin gene, HvPIP2;5 confers salt and osmotic stress tolerance in yeast and plants. Front Plant Sci, 7:1566.

[9]Albrecht C, Russinova E, Kemmerling B, et al., 2008. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE proteins serve brassinosteroid-dependent and -independent signaling pathways. Plant Physiol, 148(1):611-619.

[10]Alexander R, Alamillo JM, Salamini F, et al., 1994. A novel embryo-specific barley cDNA clone encodes a protein with homologies to bacterial glucose and ribitol dehydrogenase. Planta, 192(4):519-525.

[11]Alhasnawi AN, 2019. Role of proline in plant stress tolerance: a mini review. Res Crops, 20(1):223-229.

[12]Ali E, Hussain N, Shamsi IH, et al., 2018. Role of jasmonic acid in improving tolerance of rapeseed (Brassica napus L.) to Cd toxicity. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 19(2):130-146.

[13]al-Karaki GN, 2001. Germination, sodium, and potassium concentrations of barley seeds as influenced by salinity. J Plant Nutr, 24(3):511-522.

[14]Alsheikh MK, Heyen BJ, Randall SK, 2003. Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J Biol Chem, 278(42):40882-40889.

[15]al-Yassin A, Khademian R, 2015. Allelic variation of salinity tolerance genes in barley ecotypes (natural populations) using EcoTILLING: a review article. Am Eur J Agric Environ Sci, 15(4):563-572.

[16]Angessa TT, Zhang XQ, Zhou GF, et al., 2017. Early growth stages salinity stress tolerance in CM72×Gairdner doubled haploid barley population. PLoS ONE, 12(6):e0179715.

[17]Anosheh HP, Sadeghi H, Emam Y, 2011. Chemical priming with urea and KNO3 enhances maize hybrids (Zea mays L.) seed viability under abiotic stress. J Crop Sci Biotechnol, 14(4):289-295.

[18]Anuradha S, Rao SSR, 2001. Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regul, 33(2):151-153.

[19]Arora A, 2005. Ethylene receptors and molecular mechanism of ethylene sensitivity in plants. Curr Sci, 89(8):1348-1361.

[20]Ashraf M, 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv, 27(1):84-93.

[21]Ashraf M, Harris PJC, 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci, 166(1):3-16.

[22]Ashraf M, Harris PJC, 2005. Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches. Haworth Press, New York, USA.

[23]Ashraf M, Akram NA, Arteca RN, et al., 2010. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci, 29(3):162-190.

[24]Assaha DVM, Ueda A, Saneoka H, et al., 2017. The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol, 8:509.

[25]Bajguz A, Hayat S, 2009. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem, 47(1):1-8.

[26]Bartels D, Nelson D, 1994. Approaches to improve stress tolerance using molecular genetics. Plant Cell Environ, 17(5):659-667.

[27]Baskin CC, Baskin JM, 2001. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, San Diego, USA.

[28]Batistič O, Rehers M, Akerman A, et al., 2012. S-acylation-dependent association of the calcium sensor CBL2 with the vacuolar membrane is essential for proper abscisic acid responses. Cell Res, 22(7):1155-1168.

[29]Baudino S, Hansen S, Brettschneider R, et al., 2001. Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family. Planta, 213(1):1-10.

[30]Belin C, Lopez-Molina L, 2008. Arabidopsis seed germination responses to osmotic stress involve the chromatin modifier PICKLE. Plant Signal Behav, 3(7):478-479.

[31]Benson DA, Cavanaugh M, Clark K, et al., 2013. GenBank. Nucleic Acids Res, 41(D1):D36-D42.

[32]Bentsink L, Koornneef M, 2008. Seed dormancy and germination. Arabidopsis Book, 6:e0119.

[33]Bernstein L, 1963. Osmotic adjustment of plants to saline media. II. Dynamic phase. Am J Bot, 50(4):360-370.

[34]Bewley JD, 1997. Seed germination and dormancy. Plant Cell, 9(7):1055-1066.

[35]Bewley JD, Bradford KJ, Hilhorst HWM, et al., 2013. Seeds: Physiology of Development, Germination and Dormancy, 3rd Ed. Springer, New York, USA.

[36]Blackman SA, Wettlaufer SH, Obendorf RL, et al., 1991. Maturation proteins associated with desiccation tolerance in soybean. Plant Physiol, 96(3):868-874.

[37]Bliss RD, Platt-Aloia KA, Thomson WW, 1986. Osmotic sensitivity in relation to salt sensitivity in germinating barley seeds. Plant Cell Environ, 9(9):721-725.

[38]Bordi A, 2010. The influence of salt stress on seed germination, growth and yield of canola cultivars. Not Bot Hort Agrobot Cluj, 38(1):128-133.

[39]Brini F, Hanin M, Lumbreras V, et al., 2007. Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep, 26(11):2017-2026.

[40]Brini F, Yamamoto A, Jlaiel L, et al., 2011. Pleiotropic effects of the wheat dehydrin DHN-5 on stress responses in Arabidopsis. Plant Cell Physiol, 52(4):676-688.

[41]Calestani C, Moses MS, Maestri E, et al., 2015. Constitutive expression of the barley dehydrin gene aba2 enhances Arabidopsis germination in response to salt stress. Int J Plant Biol, 6(1):5826.

[42]Capiati DA, Pais SM, Téllez-Iñón MT, 2006. Wounding increases salt tolerance in tomato plants: evidence on the participation of calmodulin-like activities in cross-tolerance signalling. J Exp Bot, 57(10):2391-2400.

[43]Chen M, Wang QY, Cheng XG, et al., 2007. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun, 353(2):299-305.

[44]Chen ZH, Cuin TA, Zhou MX, et al., 2007. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot, 58(15-16):4245-4255.

[45]Cheng C, Zhang Y, Chen XG, et al., 2018. Co-expression of AtNHX1 and TsVP improves the salt tolerance of transgenic cotton and increases seed cotton yield in a saline field. Mol Breeding, 38(2):19.

[46]Cheng CH, Li CM, Wang DD, et al., 2018. The soybean GmNARK affects ABA and salt responses in transgenic Arabidopsis thaliana. Front Plant Sci, 9:514.

[47]Cheng ZQ, Targolli J, Huang XQ, et al., 2002. Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol Breed, 10(1-2):71-82.

[48]Cheong YH, Sung SJ, Kim BG, et al., 2010. Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Mol Cells, 29(2):159-165.

[49]Chinnusamy V, Jagendorf A, Zhu JK, 2005. Understanding and improving salt tolerance in plants. Crop Sci, 45(2):437-448.

[50]Chinnusamy V, Zhu JH, Zhu JK, 2006. Gene regulation during cold acclimation in plants. Physiol Plant, 126(1):52-61.

[51]Chiwocha SDS, Cutler AJ, Abrams SR, et al., 2005. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J, 42(1):35-48.

[52]Colmsee C, Beier S, Himmelbach A, et al., 2015. BARLEX the barley draft genome explorer. Mol Plant, 8(6):964-966.

[53]Corpas FJ, Barroso JB, Sandalio LM, et al., 1998. A dehydrogenase-mediated recycling system of NADPH in plant peroxisomes. Biochem J, 330(2):777-784.

[54]Dai XY, Xu YY, Ma QB, et al., 2007. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol, 143(4):1739-1751.

[55]Debez A, Slimen IDB, Bousselmi S, et al., 2019. Comparative analysis of salt impact on sea barley from semi-arid habitats in Tunisia and cultivated barley with special emphasis on reserve mobilization and stress recovery aptitude. Plant Biosyst, published online.

[56]Deng XM, Hu W, Wei SY, et al., 2013. TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS ONE, 8(7):e69881.

[57]Diaz-Mendoza M, Diaz I, Martinez M, 2019. Insights on the proteases involved in barley and wheat grain germination. Int J Mol Sci, 20(9):2087.

[58]Diédhiou CJ, Popova OV, Dietz KJ, et al., 2008. The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC Plant Biol, 8:49.

[59]Dodd GL, Donovan LA, 1999. Water potential and ionic effects on germination and seedling growth of two cold desert shrubs. Am J Bot, 86(8):1146-1153.

[60]Dong W, Wang MC, Xu F, et al., 2013. Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging. Plant Physiol, 161(3):1217-1228.

[61]Dubouzet JG, Sakuma Y, Ito Y, et al., 2003. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J, 33(4):751-763.

[62]el-Mashad AAA, Mohamed HI, 2012. Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma, 249(3):625-635.

[63]Emam Y, Hosseini E, Rafiei N, et al., 2013. Response of early growth and sodium and potassium concentration in ten barley (Hordeum vulgare L.) cultivars under salt stress conditions. Crop Physiol J, 19:5-15.

[64]Fedoroff NV, 2002. Cross-talk in abscisic acid signaling. Sci STKE, 10(140):re10.

[65]Figueras M, Pujal J, Saleh A, et al., 2004. Maize Rabl7 overexpression in Arabidopsis plants promotes osmotic stress tolerance. Ann Appl Biol, 144(3):251-257.

[66]Finch-Savage WE, Leubner-Metzger G, 2006. Seed dormancy and the control of germination. New Phytol, 171(3):501-523.

[67]Flowers TJ, Hajibagheri MA, 2001. Salinity tolerance in Hordeum vulgare: ion concentrations in root cells of cultivars differing in salt tolerance. Plant Soil, 231(1):1-9.

[68]Fu LB, Shen QF, Kuang LH, et al., 2018. Metabolite profiling and gene expression of Na/K transporter analyses reveal mechanisms of the difference in salt tolerance between barley and rice. Plant Physiol Biochem, 130:248-257.

[69]Gao S, Song JB, Wang Y, et al., 2017. An F-box E3 ubiquitin ligase-coding gene AtDIF1 is involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner. Environ Exp Bot, 138:21-35.

[70]Ghassemi F, Jakeman AJ, Nix HA, 1995. Salinisation of Land and Water Resources: Human Causes, Extent, Management and Case Studies. CAB International, Wallingford, UK.

[71]Giri J, Vij S, Dansana PK, et al., 2011. Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol, 191(3):721-732.

[72]Glenn EP, Brown JJ, Blumwald E, 1999. Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci, 18(2):227-255.

[73]Gouiaa S, Khoudi H, Leidi EO, et al., 2012. Expression of wheat Na+/H+ antiporter TNHXS1 and H+-pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Plant Mol Biol, 79(1-2):137-155.

[74]Graeber K, Linkies A, Müller K, et al., 2010. Cross-species approaches to seed dormancy and germination: conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes. Plant Mol Biol, 73(1-2):67-87.

[75]Greenway H, Munns R, 1980. Mechanisms of salt tolerance in nonhalophytes. Ann Rev Plant Physiol, 31:149-190.

[76]Grotewold E, 2008. Transcription factors for predictive plant metabolic engineering: are we there yet? Curr Opin Biotechnol, 19(2):138-144.

[77]Guo WL, Chen TL, Hussain N, et al., 2016. Characterization of salinity tolerance of transgenic rice lines harboring HsCBL8 of wild barley (Hordeum spontanum) line from Qinghai-Tibet Plateau. Front Plant Sci, 7:1678.

[78]Gupta B, Huang BR, 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics, 2014:701596.

[79]Gürel F, Öztürk ZN, Uçarlı C, et al., 2016. Barley genes as tools to confer abiotic stress tolerance in crops. Front Plant Sci, 7:1137.

[80]Gutterson N, Reuber TL, 2004. Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol, 7(4):465-471.

[81]Hampson CR, Simpson GM, 1990. Effects of temperature, salt, and osmotic potential on early growth of wheat (Triticum aestivum). I. Germination. Can J Bot, 68(3):524-528.

[82]Han B, Hughes DW, Galau GA, et al., 1997. Changes in late-embryogenesis-abundant (LEA) messenger RNAs and dehydrins during maturation and premature drying of Ricinus communis L. seeds. Planta, 201(1):27-35.

[83]Han Y, Yin SY, Huang L, 2015. Towards plant salinity tolerance-implications from ion transporters and biochemical regulation. Plant Growth Regul, 76(1):13-23.

[84]Han Y, Yin SY, Huang L, et al., 2018. A sodium transporter HvHKT1;1 confers salt tolerance in barley via regulating tissue and cell ion homeostasis. Plant Cell Physiol, 59(10):1976-1989.

[85]Hanin M, Ebel C, Ngom M, et al., 2016. New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci, 7:1787.

[86]Hara M, 2010. The multifunctionality of dehydrins: an overview. Plant Signal Behav, 5(5):503-508.

[87]Harlan JR, 1995. The Living Fields: Our Agricultural Heritage. Cambridge University Press, Cambridge, UK.

[88]Hasegawa PM, Bressan RA, Zhu JK, et al., 2000. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 51:463-499.

[89]Hauvermale AL, Ariizumi T, Steber CM, 2012. Gibberellin signaling: a theme and variations on DELLA repression. Plant Physiol, 160(1):83-92.

[90]Hazzouri KM, Khraiwesh B, Amiri KMA, et al., 2018. Mapping of HKT1;5 gene in barley using GWAS approach and its implication in salt tolerance mechanism. Front Plant Sci, 9:156.

[91]He XL, Hou XN, Shen YZ, et al., 2011. TaSRG, a wheat transcription factor, significantly affects salt tolerance in transgenic rice and Arabidopsis. FEBS Lett, 585(8):1231-1237.

[92]Hecht V, Vielle-Calzada JP, Hartog MV, et al., 2001. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol, 127(3):803-816.

[93]Hentrich M, Böttcher C, Düchting P, et al., 2013. The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant J, 74(4):626-637.

[94]Hernández JA, Ferrer MA, Jiménez A, et al., 2001. Antioxidant systems and O2·/H2O2 production in the apoplast of pea leaves. its relation with salt-induced necrotic lesions in minor veins. Plant Physiol, 127(3):817-831.

[95]Hou FY, Huang J, Yu SL, et al., 2007. The 6-phosphogluconate dehydrogenase genes are responsive to abiotic stresses in rice. J Integr Plant Biol, 49(5):655-663.

[96]Hou XN, Liang YZ, He XL, et al., 2013. A novel ABA-responsive TaSRHP gene from wheat contributes to enhanced resistance to salt stress in Arabidopsis thaliana. Plant Mol Biol Rep, 31(4):791-801.

[97]Hoyle GL, Steadman KJ, Good RB, et al., 2015. Seed germination strategies: an evolutionary trajectory independent of vegetative functional traits. Front Plant Sci, 6:731.

[98]Hu H, Xiong L, Yang Y, 2005. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta, 222(1):107-117.

[99]Hu W, Yuan QQ, Wang Y, et al., 2012. Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco. Plant Cell Physiol, 53(12):2127-2141.

[100]Huang J, Zhang HS, Wang JF, et al., 2003. Molecular cloning and characterization of rice 6-phosphogluconate dehydrogenase gene that is up-regulated by salt stress. Mol Biol Rep, 30(4):223-227.

[101]Huang L, Kuang LH, Li X, et al., 2018. Metabolomic and transcriptomic analyses reveal the reasons why Hordeum marinum has higher salt tolerance than Hordeum vulgare. Environ Exp Bot, 156:48-61.

[102]Huang L, Kuang LH, Wu LY, et al., 2019. Comparisons in functions of HKT1;5 transporters between Hordeum marinum and Hordeum vulgare in responses to salt stress. Plant Growth Regul, 89:309-319.

[103]Huang QJ, Wang Y, 2016. Overexpression of TaNAC2D displays opposite responses to abiotic stresses between seedling and mature stage of transgenic Arabidopsis. Front Plant Sci, 7:1754.

[104]Huang QJ, Wang Y, Li B, et al., 2015. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol, 15:268.

[105]Huang X, Zhang Y, Jiao B, et al., 2012. Overexpression of the wheat salt tolerance-related gene TaSC enhances salt tolerance in Arabidopsis. J Exp Bot, 63(15):5463-5473.

[106]Hwang YS, Bethke PC, Cheong YH, et al., 2005. A gibberellin-regulated calcineurin B in rice localizes to the tonoplast and is implicated in vacuole function. Plant Physiol, 138(3):1347-1358.

[107]Isayenkov SV, 2019. Genetic sources for the development of salt tolerance in crops. Plant Growth Regul, 89(1):1-17.

[108]Ishikawa T, Shabala S, 2019. Control of xylem Na+ loading and transport to the shoot in rice and barley as a determinant of differential salinity stress tolerance. Physiol Plant, 165(3):619-631.

[109]Jahn TP, Møller ALB, Zeuthen T, et al., 2004. Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett, 574(1-3):31-36.

[110]Jalili F, Khavazi K, Pazira E, et al., 2009. Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol, 166(6):667-674.

[111]Jamil A, Riaz S, Ashraf M, et al., 2011. Gene expression profiling of plants under salt stress. Crit Rev Plant Sci, 30(5):435-458.

[112]Jaschke WD, Peuke AD, Pate JS, et al., 1997. Transport, synthesis and catabolism of abscisic acid (ABA) in intact plants of castor bean (Ricinus communis L.) under phosphate deficiency and moderate salinity. J Exp Bot, 48(9):1737-1747.

[113]Javot H, Lauvergeat V, Santoni V, et al., 2003. Role of a single aquaporin isoform in root water uptake. Plant Cell, 15(2):509-522.

[114]Jayakannan M, Bose J, Babourina O, et al., 2013. Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J Exp Bot, 64(8):2255-2268.

[115]Jeong MJ, Lee SK, Kim BG, et al., 2006. A rice (Oryza sativa L.) MAP kinase gene, OsMAPK44, is involved in response to abiotic stresses. Plant Cell Tissue Organ Cult, 85(2):151-160.

[116]Jia FJ, Wang CY, Huang JG, et al., 2015. SCF E3 ligase PP2-B11 plays a positive role in response to salt stress in Arabidopsis. J Exp Bot, 66(15):4683-4697.

[117]Jiang QY, Hu Z, Zhang H, et al., 2014. Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity. Crop J, 2(2-3):120-131.

[118]Jornvall H, von Bahr-Lindstrom H, Jany KD, et al., 1984. Extended superfamily of short alcoholpolyol-sugar dehydrogenases: structural similarities between glucose and ribitol dehydrogenases. FEBS Lett, 165(2):190-196.

[119]Joshi R, Wani SH, Singh B, et al., 2016. Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci, 7:1029.

[120]Jung J, Won SY, Suh SC, et al., 2007. The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta, 225(3):575-588.

[121]Jung YJ, Lee IH, Han KH, et al., 2010. Expression analysis and characterization of rice oligopeptide transport gene (OsOPT10) that contributes to salt stress tolerance. J Plant Biotechnol, 37(4):483-493.

[122]Kanneganti V, Gupta AK, 2008. Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol, 66(5):445-462.

[123]Kavas M, Baloğlu MC, Yücel AM, et al., 2016. Enhanced salt tolerance of transgenic tobacco expressing a wheat salt tolerance gene. Turk J Biol, 40:727-735.

[124]Kazan K, Manners JM, 2012. JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci, 17(1):22-31.

[125]Keskin BC, Sarikaya AT, Yüksel B, et al., 2010. Abscisic acid regulated gene expression in bread wheat (Triticum aestivum L.). Aust J Crop Sci, 4(8):617-625.

[126]Kleist TJ, Spencley AL, Luan S, 2014. Comparative phylogenomics of the CBL-CIPK calcium-decoding network in the moss Physcomitrella, Arabidopsis, and other green lineages. Front Plant Sci, 5:187.

[127]Koag MC, Fenton RD, Wilkens S, et al., 2003. The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol, 131(1):309-316.

[128]Koag MC, Wilkens S, Fenton RD, et al., 2009. The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol, 150(3):1503-1514.

[129]Kong DJ, Li MJ, Dong ZH, et al., 2015. Identification of TaWD40D, a wheat WD40 repeat-containing protein that is associated with plant tolerance to abiotic stresses. Plant Cell Rep, 34(3):395-410.

[130]Kong XP, Pan JW, Zhang MY, et al., 2011. ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant Cell Environ, 34(8):1291-1303.

[131]Koornneef M, Bentsink L, Hilhorst H, 2002. Seed dormancy and germination. Curr Opin Plant Biol, 5(1):33-36.

[132]Krishnaswamy S, Verma S, Rahman MH, et al., 2011. Functional characterization of four APETALA2-family genes (RAP2.6, RAP2.6L, DREB19 and DREB26) in Arabidopsis. Plant Mol Biol, 75(1-2):107-127.

[133]Krüger C, Berkowitz O, Stephan UW, et al., 2002. A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J Biol Chem, 277(28):25062-25069.

[134]Kuang LH, Shen QF, Wu LY, et al., 2019. Identification of microRNAs responding to salt stress in barley by high-throughput sequencing and degradome analysis. Environ Exp Bot, 160:59-70.

[135]Kumar S, Stecher G, Li M, et al., 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 35(6):1547-1549.

[136]Kumari N, Malik K, Rani B, et al., 2019. Insights in the physiological, biochemical and molecular basis of salt stress tolerance in plants. In: Giri B, Varma A (Eds.), Microorganisms in Saline Environments: Strategies and Functions. Springer, Cham, p.353-374.

[137]Lal S, Gulyani V, Khurana P, 2008. Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res, 17(4):651-663.

[138]Läuchli A, Grattan SR, 2007. Plant growth and development under salinity stress. In: Jenks MA, Hasegawa PM, Jain SM (Eds.), Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht, p.1-32.

[139]Lauchli AE, Epstein E, 1990. Plant responses to saline and sodic conditions. In: Tanji KK (Ed.), Agricultural Salinity Assessment and Management. ASCE, New York, p.113-137.

[140]Lee JH, Hong JP, Oh SK, et al., 2004. The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Mol Biol, 55(1):61-81.

[141]Li DD, Xia XL, Yin WL, et al., 2013. Two poplar calcineurin B-like proteins confer enhanced tolerance to abiotic stresses in transgenic Arabidopsis thaliana. Biol Plant, 57(1):70-78.

[142]Li J, 2010. Multi-tasking of somatic embryogenesis receptor-like protein kinases. Curr Opin Plant Biol, 13(5):509-514.

[143]Li SO, Xu CH, Yang YA, et al., 2010. Functional analysis of TaDi19A, a salt-responsive gene in wheat. Plant Cell Environ, 33(1):117-129.

[144]Li YB, Liu CH, Guo GM, et al., 2016. Expression analysis of three SERK-like genes in barley under abiotic and biotic stresses. J Plant Interact, 12(1):279-285.

[145]Li YY, Chen QZ, Nan HY, et al., 2017. Overexpression of GmFDL19 enhances tolerance to drought and salt stresses in soybean. PLoS ONE, 12(6):e0179554.

[146]Li ZY, Xu ZS, Chen Y, et al., 2013. A novel role for Arabidopsis CBL1 in affecting plant responses to glucose and gibberellin during germination and seedling development. PLoS ONE, 8(2):e56412.

[147]Liang WJ, Ma XL, Wan P, et al., 2018. Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun, 495(1):286-291.

[148]Liao Y, Zou HF, Wang HW, et al., 2008. Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res, 18(10):1047-1060.

[149]Liu JP, Zhu JK, 1998. A calcium sensor homolog required for plant salt tolerance. Science, 280(5371):1943-1945.

[150]Liu JP, Ishitani M, Halfter U, et al., 2000. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA, 97(7):3730-3734.

[151]Liu P, Xu ZS, Lu PP, et al., 2013. A wheat PI4K gene whose product possesses threonine autophophorylation activity confers tolerance to drought and salt in Arabidopsis. J Exp Bot, 64(10):2915-2927.

[152]Liu PP, Montgomery TA, Fahlgren N, et al., 2007. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J, 52(1):133-146.

[153]Liu Q, Kasuga M, Sakuma Y, et al., 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10(8):1391-1406.

[154]Liu RR, Wang L, Tanveer M, et al., 2018. Seed heteromorphism: an important adaptation of halophytes for habitat heterogeneity. Front Plant Sci, 9:1515.

[155]Liu SW, Lv ZY, Liu YH, et al., 2018. Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana. Genet Mol Biol, 41(3):624-637.

[156]Lopez-Molina L, Mongrand S, Chua NH, 2001. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA, 98(8):4782-4787.

[157]Lopez-Molina L, Mongrand S, McLachlin DT, et al., 2002. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J, 32(3):317-328.

[158]Luan ZH, Xiao MX, Zhou DW, et al., 2014. Effects of salinity, temperature, and polyethylene glycol on the seed germination of sunflower (Helianthus annuus L.). Sci World J, 2014:170418.

[159]Ma XY, Zhu XL, Li CL, et al., 2015. Overexpression of wheat NF-YA10 gene regulates the salinity stress response in Arabidopsis thaliana. Plant Physiol Biochem, 86:34-43.

[160]Ma ZG, Bykova NV, Igamberdiev AU, 2017. Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds. Crop J, 5(6):459-477.

[161]Machado RMA, Serralheiro RP, 2017. Soil salinity: effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae, 3(2):30.

[162]Majeed A, Muhammad Z, 2019. Salinity: a major agricultural problem—causes, impacts on crop productivity and management strategies. In: Hasanuzzaman M, Hakeem KR, Nahar K, et al. (Eds.), Plant Abiotic Stress Tolerance. Springer, Cham, p.83-99.

[163]Manchanda G, Garg N, 2008. Salinity and its effects on the functional biology of legumes. Acta Physiol Plant, 30(5):595-618.

[164]Mangano S, Silberstein S, Santa-María GE, 2008. Point mutations in the barley HvHAK1 potassium transporter lead to improved K+-nutrition and enhanced resistance to salt stress. FEBS Lett, 582(28):3922-3928.

[165]Mano Y, Takeda K, 1997. Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica, 94(3):263-272.

[166]Mano Y, Nakazumi H, Takeda K, 1996. Varietal variation in and effects of some major genes on salt tolerance at the germination stage in barley. Breed Sci, 46:227-233.

[167]Mansour MMF, Ali EF, 2017. Evaluation of proline functions in saline conditions. Phytochemistry, 140:52-68.

[168]MAPK Group, Ichimura K, Shinozaki K, et al., 2002. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 7(7):301-308.

[169]Marrs KA, 1996. The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol, 47:127-158.

[170]Mascher M, Gundlach H, Himmelbach A, et al., 2017. A chromosome conformation capture ordered sequence of the barley genome. Nature, 544(7651):427-433.

[171]Matilla AJ, 2000. Ethylene in seed formation and germination. Seed Sci Res, 10(2):111-126.

[172]Maurel C, Verdoucq L, Luu DT, et al., 2008. Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol, 59:595-624.

[173]Maurel C, Boursiac Y, Luu DT, et al., 2015. Aquaporins in plants. Physiol Rev, 95(4):1321-1358.

[174]Mekawy AMM, Assaha DVM, Yahagi H, et al., 2015. Growth, physiological adaptation, and gene expression analysis of two Egyptian rice cultivars under salt stress. Plant Physiol Biochem, 87:17-25.

[175]Mian A, Oomen RJFJ, Isayenkov S, et al., 2011. Over-expression of an Na+- and K+-permeable HKT transporter in barley improves salt tolerance. Plant J, 68(3):468-479.

[176]Miransari M, Smith DL, 2014. Plant hormones and seed germination. Environ Exp Bot, 99:110-121.

[177]Miransari M, Smith D, 2019. Sustainable wheat (Triticum aestivum L.) production in saline fields: a review. Crit Rev Biotechnol, 39(8):999-1014.

[178]Mishra S, Jha AB, Dubey RS, 2011. Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma, 248(3):565-577.

[179]Moon H, Lee B, Choi G, et al., 2003. NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci USA, 100(1):358-363.

[180]Mu JY, Tan HL, Hong SL, et al., 2013. Arabidopsis transcription factor genes NF-YA1, 5, 6, and 9 play redundant roles in male gametogenesis, embryogenesis, and seed development. Mol Plant, 6(1):188-201.

[181]Mukhopadhyay A, Vij S, Tyagi AK, 2004. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA, 101(16):6309-6314.

[182]Munns R, Tester M, 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 59:651-681.

[183]Munns R, Gardner PA, Tonnet ML, et al., 1988. Growth and development in NaCl-treated plants. II. Do Na+ or Cl concentrations in dividing or expanding tissues determine growth in barley? Aust J Plant Physiol, 15(4):529-540.

[184]Munns R, James RA, Xu B, et al., 2012. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol, 30(4):360-364.

[185]Nakashima K, Yamaguchi-Shinozaki K, 2006. Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plant, 126(1):62-71.

[186]Nalousi AM, Ahmadiyan S, Hatamzadeh A, et al., 2012. Protective role of exogenous nitric oxide against oxidative stress induced by salt stress in bell-pepper (Capsicum annum L.). Am Eur J Agric Environ Sci, 12(8):1085-1090.

[187]Narsing Rao MP, Dong ZY, Xiao M, et al., 2019. Effect of salt stress on plants and role of microbes in promoting plant growth under salt stress. In: Giri B, Varma A (Eds.), Microorganisms in Saline Environments: Strategies and Functions. Springer, Cham, p.423-435.

[188]Nawaz K, 2007. Alleviation of the Adverse Effects of Salinity Stress on Maize (Zea mays L.) by Exogenous Application of Glycine Betaine. PhD Dissemination, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan.

[189]Negrão S, Schmöckel SM, Tester M, 2017. Evaluating physiological responses of plants to salinity stress. Ann Bot, 119(1):1-11.

[190]Nguyen TH, To HTM, Lebrun M, et al., 2019. Jasmonates— the master regulator of rice development, adaptation and defense. Plants, 8(9):339.

[191]Nolan KE, Irwanto RR, Rose RJ, 2003. Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol, 133(1):218-230.

[192]Oh SJ, Kwon CW, Choi DW, et al., 2007. Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J, 5(5):646-656.

[193]Pandey DK, Chaudhary B, 2014. Oxidative stress responsive SERK1 gene directs the progression of somatic embryogenesis in cotton (Gossypium hirsutum L. cv. Coker 310). Am J Plant Sci, 5(1):80-102.

[194]Pandey GK, Grant JJ, Cheong YH, et al., 2008. Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. Mol Plant, 1(2):238-248.

[195]Pardo JM, Reddy MP, Yang SL, et al., 1998. Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc Natl Acad Sci USA, 95(16):9681-9686.

[196]Parihar P, Singh S, Singh R, et al., 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res, 22(6):4056-4075.

[197]Peleg Z, Blumwald E, 2011. Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol, 14(3):290-295.

[198]Pennazio S, Roggero P, 1991. Effects of exogenous salicylate on basal and stress-induced ethylene formation in soybean. Biol Plant, 33(1):58-65.

[199]Petruzzelli L, Coraggio I, Leubner-Metzger G, 2000. Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclo-propane-1-carboxylic acid oxidase. Planta, 211(1):144-149.

[200]Pimentel D, Berger B, Filiberto D, et al., 2004. Water resources: agricultural and environmental issues. BioScience, 54(10):909-918.

[201]Pirasteh-Anosheh H, Ranjbar G, Pakniyat H, et al., 2016. Physiological mechanisms of salt stress tolerance in plants: an overview. In: Azooz MM, Ahmad P (Eds.), Plant-Environment Interaction: Responses and Approaches to Mitigate Stress. John Wiley & Sons, Ltd., Chichester, UK, p.141-160.

[202]Polash MAS, Sakil A, Hossain A, 2019. Plants responses and their physiological and biochemical defense mechanisms against salinity: a review. Trop Plant Res, 6(2):250-274.

[203]Popko J, Hänsch R, Mendel RR, et al., 2010. The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biol, 12(2):242-258.

[204]Popova LP, Stoinova ZG, Maslenkova LT, 1995. Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L. during salinity stress. J Plant Growth Regul, 14(4):211-218.

[205]Postaire O, Tournaire-Roux C, Grondin A, et al., 2010. A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis. Plant Physiol, 152(3):1418-1430.

[206]Procházka P, Štranc P, Kupka I, et al., 2015. Forest seed treatment with brassinosteroids to increase their germination under stress conditions. J For Sci, 61(7):291-296.

[207]Qiu L, Wu DZ, Ali S, et al., 2011. Evaluation of salinity tolerance and analysis of allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. Theor Appl Genet, 122(4):695-703.

[208]Rajjou L, Duval M, Gallardo K, et al., 2012. Seed germination and vigor. Annu Rev Plant Biol, 63:507-533.

[209]Reddy VS, Reddy ASN, 2004. Proteomics of calcium-signaling components in plants. Phytochemistry, 65(12):1745-1776.

[210]Redillas MCFR, Jeong JS, Kim YS, et al., 2012. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J, 10(7):792-805.

[211]Rengasamy P, 2002. Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Aust J Exp Agric, 42(3):351-361.

[212]Rengasamy P, 2006. World salinization with emphasis on Australia. J Exp Bot, 57(5):1017-1023.

[213]Riechmann JL, Heard J, Martin G, et al., 2000. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 290(5499):2105-2110.

[214]Rinaldi LMR, 2000. Germination of seeds of olive (Olea europaea L.) and ethylene production: effects of harvesting time and thidiazuron treatment. J Hortic Sci Biotechnol, 75(6):727-732.

[215]Rivandi J, Miyazaki J, Hrmova M, et al., 2011. A SOS3 homologue maps to HvNax4, a barley locus controlling an environmentally sensitive Na+ exclusion trait. J Exp Bot, 62(3):1201-1216.

[216]Romo JT, Haferkamp MR, 1987. Effects of osmotic potential, potassium chloride, and sodium chloride on germination of greasewood (Sarcobatus vermiculatus). Great Basin Nat, 47(1):110-116.

[217]Rong W, Qi L, Wang AY, et al., 2014. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J, 12(4):468-479.

[218]Sabagh AEL, Hossain A, Islam S, et al., 2019. Drought and salinity stresses in barley: consequences and mitigation strategies. Aust J Crop Sci, 13(6):810-820.

[219]Safdar H, Amin A, Shafiq Y, et al., 2019. A review: impact of salinity on plant growth. Nat Sci, 17:34-40.

[220]Sakuma Y, Liu Q, Dubouzet JG, et al., 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun, 290(3):998-1009.

[221]Sayar R, Bchini H, Mosbahi M, et al., 2010. Effects of salt and drought stresses on germination, emergence and seedling growth of durum wheat (Triticum durum Desf.). J Agric Res, 5(15):2008-2016.

[222]Schmidt EDL, Guzzo F, Toonen MAJ, et al., 1997. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development, 124(10):2049-2062.

[223]Schulte D, Close TJ, Graner A, et al., 2009. The international barley sequencing consortium—at the threshold of efficient access to the barley genome. Plant Physiol, 149(1):142-147.

[224]Seo PJ, Lee AK, Xiang FN, et al., 2008. Molecular and functional profiling of Arabidopsis pathogenesis-related genes: insights into their roles in salt response of seed germination. Plant Cell Physiol, 49(3):334-344.

[225]Shabala S, Shabala S, Cuin TA, et al., 2010. Xylem ionic relations and salinity tolerance in barley. Plant J, 61(5):839-853.

[226]Sharma R, Sahoo A, Devendran R, et al., 2014. Over-expression of a rice tau class glutathione S-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis. PLoS ONE, 9(3):e92900.

[227]Shen QF, Yu JH, Fu LB, et al., 2018. Ionomic, metabolomic and proteomic analyses reveal molecular mechanisms of root adaption to salt stress in Tibetan wild barley. Plant Physiol Biochem, 123:319-330.

[228]Shi HZ, Ishitani M, Kim C, et al., 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA, 97(12):6896-6901.

[229]Shinozaki K, Yamaguchi-Shinozaki K, 2000. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol, 3(3):217-223.

[230]Shinozaki K, Yamaguchi-Shinozaki K, 2007. Gene networks involved in drought stress response and tolerance. J Exp Bot, 58(2):221-227.

[231]Shiu SH, Shih MC, Li WH, 2005. Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiol, 139(1):18-26.

[232]Shrivastava P, Kumar R, 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci, 22(2):123-131.

[233]Shu S, Guo SR, Yuan LY, 2012. A review: polyamines and photosynthesis. In: Najafpour M (Ed.), Advances in Photosynthesis—Fundamental Aspects. IntechOpen, Rijeka, Croatia, p.439-464.

[234]Singla B, Khurana JP, Khurana P, 2008. Characterization of three somatic embryogenesis receptor kinase genes from wheat, Triticum aestivum. Plant Cell Rep, 27(5):833-843.

[235]Singla B, Khurana JP, Khurana P, 2009. Structural characterization and expression analysis of the SERK/SERL gene family in rice (Oryza sativa). Int J Plant Genomics, 2009: 539402.

[236]Skriver K, Mundy J, 1990. Gene expression in response to abscisic acid and osmotic stress. Plant Cell, 2(6):503-512.

[237]Somleva MN, Schmidt EDL, de Vries SC, 2000. Embryogenic cells in Dactylis glomerata L. (Poaceae) explants identified by cell tracking and by SERK expression. Plant Cell Rep, 19(7):718-726.

[238]Subbiah V, Reddy KJ, 2010. Interactions between ethylene, abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis. J Biosci, 35(3):451-458.

[239]Sun SJ, Guo SQ, Yang X, et al., 2010. Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot, 61(10):2807-2818.

[240]Sun TP, Gubler F, 2004. Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol, 55:197-223.

[241]Teige M, Scheikl E, Eulgem T, et al., 2004. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell, 15(1):141-152.

[242]The International Barley Genome Sequencing Consortium, 2012. A physical, genetic and functional sequence assembly of the barley genome. Nature, 491(7426):711-716.

[243]Tunnacliffe A, Wise MJ, 2007. The continuing conundrum of the LEA proteins. Naturwissenschaften, 94(10):791-812.

[244]Turan S, Cornish K, Kumar S, 2012. Salinity tolerance in plants: breeding and genetic engineering. Aust J Crop Sci, 6(9):1337-1348.

[245]Uehlein N, Lovisolo C, Siefritz F, et al., 2003. The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature, 425(6959):734-737.

[246]Valderrama R, Corpas FJ, Carreras A, et al., 2006. The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant Cell Environ, 29(7):1449-1459.

[247]Vázquez MN, Guerrero YR, de la Noval WT, et al., 2019. Advances on exogenous applications of brassinosteroids and their analogs to enhance plant tolerance to salinity: a review. Aust J Crop Sci, 13(1):115-121.

[248]Visioni A, al-Abdallat A, Elenien JA, et al., 2019. Genomics and molecular breeding for improving tolerance to abiotic stress in barley (Hordeum vulgare L.). In: Rajpal VR, Sehgal D, Kumar A, et al. (Eds.), Genomics Assisted Breeding of Crops for Abiotic Stress Tolerance, Vol. II. Springer, Cham, p.49-68.

[249]Volkmar KM, Hu Y, Steppuhn H, 1998. Physiological responses of plants to salinity: a review. Can J Plant Sci, 78(1):19-27.

[250]Walia H, Wilson C, Wahid A, et al., 2006. Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genomics, 6(2):143-156.

[251]Walters C, Ried JL, Walker-Simmons MK, 1997. Heat-soluble proteins extracted from wheat embryos have tightly bound sugars and unusual hydration properties. Seed Sci Res, 7(2):125-134.

[252]Wang C, Deng PY, Chen LL, et al., 2013. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS ONE, 8(6):e65120.

[253]Wang JB, Ding B, Guo YL, et al., 2014. Overexpression of a wheat phospholipase D gene, TaPLDα, enhances tolerance to drought and osmotic stress in Arabidopsis thaliana. Planta, 240(1):103-115.

[254]Wang L, He XL, Zhao YJ, et al., 2011. Wheat vacuolar H+-ATPase subunit B cloning and its involvement in salt tolerance. Planta, 234(1):1-7.

[255]Wang MY, Gu D, Liu TS, et al., 2007. Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Mol Biol, 65(6):733-746.

[256]Wang X, Shi GX, Xu QS, et al., 2007. Exogenous polyamines enhance copper tolerance of Nymphoides peltatum. J Plant Physiol, 164(8):1062-1070.

[257]Wang X, Hou C, Zheng K, et al., 2017. Overexpression of ERF96, a small ethylene response factor gene, enhances salt tolerance in Arabidopsis. Biol Plant, 61(4):693-701.

[258]Wang XT, Zeng J, Li Y, et al., 2015. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Front Plant Sci, 6:615.

[259]Weitbrecht K, Müller K, Leubner-Metzger G, 2011. First off the mark: early seed germination. J Exp Bot, 62(10):3289-3309.

[260]Weyers JDB, Paterson NW, 2001. Plant hormones and the control of physiological processes. New Phytol, 152(3):375-407.

[261]Widodo, Patterson JH, Newbigin E, et al., 2009. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot, 60(14):4089-4103.

[262]Witzel K, Weidner A, Surabhi GK, et al., 2010. Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination. Plant Cell Environ, 33(2):211-222.

[263]Wu DZ, Qiu L, Xu LL, et al., 2011. Genetic variation of HVCBF genes and their association with salinity tolerance in Tibetan annual wild barley. PLoS ONE, 6(7):e22938.

[264]Wu HH, Shabala L, Zhou MX, et al., 2019. Root vacuolar Na+ sequestration but not exclusion from uptake correlates with barley salt tolerance. Plant J, 100(1):55-67.

[265]Wurzinger B, Mair A, Pfister B, et al., 2011. Cross-talk of calcium-dependent protein kinase and MAP kinase signaling. Plant Signal Behav, 6(1):8-12.

[266]Xiang Y, Lu YH, Song M, et al., 2015. Overexpression of a Triticum aestivum calreticulin gene (TaCRT1) improves salinity tolerance in tobacco. PLoS ONE, 10(10):e0140591.

[267]Xiong HY, Li JJ, Liu PL, et al., 2014. Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS ONE, 9(3):e92913.

[268]Xiong LM, Zhu JK, 2001. Abiotic stress signal transduction in plants: molecular and genetic perspectives. Physiol Plant, 112(2):152-166.

[269]Xiong LZ, Yang YN, 2003. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 15(3):745-759.

[270]Xu Q, Truong TT, Barrero JM, et al., 2016. A role for jasmonates in the release of dormancy by cold stratification in wheat. J Exp Bot, 67(11):3497-3508.

[271]Xu ZS, Ni ZY, Liu L, et al., 2008a. Characterization of the TaAIDFa gene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat. Mol Genet Genomics, 280(6):497-508.

[272]Xu ZS, Chen M, Li LC, et al., 2008b. Functions of the ERF transcription factor family in plants. Botany, 86(9):969-977.

[273]Xu ZS, Ni ZY, Li ZY, et al., 2009. Isolation and functional characterization of HvDREB1—a gene encoding a dehydration-responsive element binding protein in Hordeum vulgare. J Plant Res, 122(1):121-130.

[274]Xue DW, Huang YZ, Zhang XQ, et al., 2009. Identification of QTLs associated with salinity tolerance at late growth stage in barley. Euphytica, 169(2):187-196.

[275]Xue GP, Loveridge CW, 2004. HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J, 37(3):326-339.

[276]Xue ZY, Zhi DY, Xue GP, et al., 2004. Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci, 167(4):849-859.

[277]Yadav D, Ahmed I, Shukla P, et al., 2016. Overexpression of Arabidopsis AnnAt8 alleviates abiotic stress in transgenic Arabidopsis and tobacco. Plants, 5(2):18.

[278]Yang C, Zhao TJ, Yu DY, et al., 2011. Isolation and functional characterization of a SERK gene from soybean (Glycine max (L.) Merr.). Plant Mol Biol Rep, 29(2):334-344.

[279]Yang SF, Hoffman NE, 1984. Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol, 35: 155-189.

[280]Yarra R, 2019. The wheat NHX gene family: potential role in improving salinity stress tolerance of plants. Plant Gene, 18:100178.

[281]Yarra R, Kirti PB, 2019. Expressing class I wheat NHX (TaNHX2) gene in eggplant (Solanum melongena L.) improves plant performance under saline condition. Funct Integr Genomics, 19(4):541-554.

[282]Yen HE, Wu SM, Hung YH, et al., 2000. Isolation of 3 salt-induced low-abundance cDNAs from light-grown callus of Mesembryanthemum crystallinum by suppression subtractive hybridization. Physiol Plant, 110(3):402-409.

[283]Yi SY, Kim JH, Joung YH, et al., 2004. The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol, 136(1):2862-2874.

[284]Yin SY, Han Y, Huang L, et al., 2018. Overexpression of HvCBF7 and HvCBF9 changes salt and drought tolerance in Arabidopsis. Plant Growth Regul, 85(2):281-292.

[285]Yin XY, Yang AF, Zhang KW, et al., 2004. Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Bot Sin-Engl Ed, 46(7):854-861.

[286]Yousefirad S, Soltanloo H, Ramezanpour SS, et al., 2018. Salt oversensitivity derived from mutation breeding improves salinity tolerance in barley via ion homeostasis. Biol Plant, 62(4):775-785.

[287]Zang DD, Li HY, Xu HY, et al., 2016. An Arabidopsis zinc finger protein increases abiotic stress tolerance by regulating sodium and potassium homeostasis, reactive oxygen species scavenging and osmotic potential. Front Plant Sci, 7:1272.

[288]Zardoya R, Ding XD, Kitagawa Y, et al., 2002. Origin of plant glycerol transporters by horizontal gene transfer and functional recruitment. Proc Natl Acad Sci USA, 99(23):14893-14896.

[289]Zhang D, Jiang S, Pan J, et al., 2014. The overexpression of a maize mitogen-activated protein kinase gene (ZmMPK5) confers salt stress tolerance and induces defence responses in tobacco. Plant Biol, 16(3):558-570.

[290]Zhang GQ, Zhang M, Zhao ZX, et al., 2017. Wheat TaPUB1 modulates plant drought stress resistance by improving antioxidant capability. Sci Rep, 7:7549.

[291]Zhang HW, Huang ZJ, Xie BY, et al., 2004. The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta, 220(2):262-270.

[292]Zhang HX, Irving LJ, McGill C, et al., 2010. The effects of salinity and osmotic stress on barley germination rate: sodium as an osmotic regulator. Ann Bot, 106(6):1027-1035.

[293]Zhang X, Ju HW, Chung MS, et al., 2011. The R-R-type MYB-like transcription factor, AtMYBL, is involved in promoting leaf senescence and modulates an abiotic stress response in Arabidopsis. Plant Cell Physiol, 52(1):138-148.

[294]Zhang XX, Liu SK, Takano T, 2008. Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol Biol, 68(1-2):131-143.

[295]Zhang XX, Tang YJ, Ma QB, et al., 2013. OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean. PLoS ONE, 8(12):e83011.

[296]Zhang Y, Chen C, Jin XF, et al., 2009. Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high-salt tolerance in transgenic Arabidopsis. BMB Rep, 42(8):486-492.

[297]Zhang YY, Wang LL, Liu YL, et al., 2006. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta, 224(3):545-555.

[298]Zhao LQ, Zhang F, Guo JK, et al., 2004. Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol, 134(2):849-857.

[299]Zhao Y, Tian XJ, Li YY, et al., 2017. Molecular and functional characterization of wheat ARGOS genes influencing plant growth and stress tolerance. Front Plant Sci, 8:170.

[300]Zhu JH, Shi HZ, Lee BH, et al., 2004. An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci USA, 101(26):9873-9878.

[301]Zhu JH, Verslues PE, Zheng XW, et al., 2005. HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc Natl Acad Sci USA, 102(28):9966-9971.

[302]Zhu JK, 2001. Plant salt tolerance. Trends Plant Sci, 6(2):66-71.

[303]Zhu JK, 2002. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 53:247-273.

[304]Zhu JK, 2003. Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol, 6(5):441-445.

[305]Zhu JK, Hasegawa PM, Bressan RA, et al., 1997. Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci, 16(3):253-277.

[306]List of electronic supplementary materials

[307]Table S1 Expression levels in different tissues and growth stages of candidate genes for barley salinity tolerance at germination

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE