Full Text:   <303>

Summary:  <100>

Suppl. Mater.: 

CLC number: 

On-line Access: 2023-06-13

Received: 2022-11-03

Revision Accepted: 2023-02-19

Crosschecked: 2023-07-21

Cited: 0

Clicked: 415

Citations:  Bibtex RefMan EndNote GB/T7714


Xiao XU


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2023 Vol.24 No.6 P.485-495


Fibroblast growth factor 21 (FGF21) attenuates tacrolimus-induced hepatic lipid accumulation through transcription factor EB (TFEB)-regulated lipophagy

Author(s):  Zhensheng ZHANG, Li XU, Xun QIU, Xinyu YANG, Zhengxing LIAN, Xuyong WEI, Di LU, Xiao XU

Affiliation(s):  Zhejiang University School of Medicine, Hangzhou 310058, China; more

Corresponding email(s):   zjxu@zju.edu.cn

Key Words:  Autophagy, Fibroblast growth factor 21 (FGF21), Lipid, Lipophagy, Lysosome, Tacrolimus, Transcription factor EB (TFEB)

Zhensheng ZHANG, Li XU, Xun QIU, Xinyu YANG, Zhengxing LIAN, Xuyong WEI, Di LU, Xiao XU. Fibroblast growth factor 21 (FGF21) attenuates tacrolimus-induced hepatic lipid accumulation through transcription factor EB (TFEB)-regulated lipophagy[J]. Journal of Zhejiang University Science B, 2023, 24(6): 485-495.

@article{title="Fibroblast growth factor 21 (FGF21) attenuates tacrolimus-induced hepatic lipid accumulation through transcription factor EB (TFEB)-regulated lipophagy",
author="Zhensheng ZHANG, Li XU, Xun QIU, Xinyu YANG, Zhengxing LIAN, Xuyong WEI, Di LU, Xiao XU",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Fibroblast growth factor 21 (FGF21) attenuates tacrolimus-induced hepatic lipid accumulation through transcription factor EB (TFEB)-regulated lipophagy
%A Zhensheng ZHANG
%A Li XU
%A Xun QIU
%A Xinyu YANG
%A Zhengxing LIAN
%A Xuyong WEI
%A Di LU
%A Xiao XU
%J Journal of Zhejiang University SCIENCE B
%V 24
%N 6
%P 485-495
%@ 1673-1581
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2200562

T1 - Fibroblast growth factor 21 (FGF21) attenuates tacrolimus-induced hepatic lipid accumulation through transcription factor EB (TFEB)-regulated lipophagy
A1 - Zhensheng ZHANG
A1 - Li XU
A1 - Xun QIU
A1 - Xinyu YANG
A1 - Zhengxing LIAN
A1 - Xuyong WEI
A1 - Di LU
A1 - Xiao XU
J0 - Journal of Zhejiang University Science B
VL - 24
IS - 6
SP - 485
EP - 495
%@ 1673-1581
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2200562

tacrolimus (TAC), also called FK506, is one of the classical immunosuppressants to prevent allograft rejection after liver transplantation. However, it has been proved to be associated with post-transplant hyperlipemia. The mechanism behind this is unknown, and it is urgent to explore preventive strategies for hyperlipemia after transplantation. Therefore, we established a hyperlipemia mouse model to investigate the mechanism, by injecting TAC intraperitoneally for eight weeks. After TAC treatment, the mice developed hyperlipemia (manifested as elevated triglyceride (TG) and low-density lipoprotein cholesterol (LDL-c), as well as decreased high-density lipoprotein cholesterol (HDL-c)). Accumulation of lipid droplets was observed in the liver. In addition to lipid accumulation, TAC induced inhibition of the autophagy-lysosome pathway (microtubule-associated protein 1 light chain 3β (LC3B) II/I and LC3B II/actin ratios, transcription factor EB (TFEB), protein 62 (P62), and lysosomal-associated membrane protein 1 (LAMP1)) and downregulation of fibroblast growth factor 21 (FGF21) in vivo. Overexpression of FGF21 may reverse TAC-induced TG accumulation. In this mouse model, the recombinant FGF21 protein ameliorated hepatic lipid accumulation and hyperlipemia through repair of the autophagy-lysosome pathway. We conclude that TAC downregulates FGF21 and thus exacerbates lipid accumulation by impairing the autophagy-lysosome pathway. Recombinant FGF21 protein treatment could therefore reverse TAC-caused lipid accumulation and hypertriglyceridemia by enhancing autophagy.


张镇胜1,2,4,5,6, 徐力3,4,5,6, 邱洵1,2,4,5,6, 阳新宇1,2,4,5,6, 连正星1,2,4,5,6, 魏绪勇1,2,4,5,6, 鲁迪1,2,4,5,6, 徐骁1,2,4,5,6
1浙江大学医学院, 中国杭州市, 310058
3浙江大学医学院附属第一医院肝胆胰外科, 中国杭州市, 310003
4浙江大学器官移植研究所, 中国杭州市, 310003
5卫健委多器官联合移植重点实验室, 中国杭州市, 310003
6西湖实验室(生命科学和生物医学浙江省实验室), 中国杭州市, 310024
摘要: 他克莫司(TAC),也称为FK506,是预防肝移植后同种异体移植排斥反应的经典免疫抑制剂之一。然而,它已被证明与移植后高脂血症有关。但其背后的机制尚不清楚,因此迫切需要探索移植后高脂血症的预防策略。我们通过腹腔注射8周TAC建立了一个高脂血症小鼠模型来研究其机制。TAC处理后,小鼠发生高脂血症(表现为甘油三酯(TG)和低密度脂蛋白胆固醇(LDL-c)升高,以及高密度脂蛋白胆固醇(HDL-c)降低)以及肝脏脂质的累积。除脂质积累外,TAC还抑制了自噬-溶酶体途径(LC3B II/I和LC3BII/actin比值、转录因子EB(TFEB)、P62和LAMP1),并下调成纤维细胞生长因子21(FGF21)的表达。而FGF21的过表达可逆转TAC诱导的TG积累。在该小鼠模型中,重组FGF21蛋白通过修复自噬-溶酶体途径改善肝脏脂质积累和高脂血症。综上所述,TAC下调FGF21,从而通过抑制自噬-溶酶体途径来加剧脂质积累。此外,重组FGF21蛋白处理可以通过增强自噬来逆转TAC引起的脂质积累和高甘油三酯血症。
关键词: 自噬;成纤维细胞生长因子21(FGF21);脂质;脂噬;溶酶体;他克莫司(TAC);转录因子EB(TFEB)

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]AchilaOO, FessahyeN, MengistuST, et al., 2022. A community based cross sectional study on the prevalence of dyslipidemias and 10 years cardiovascular risk scores in adults in Asmara, Eritrea. Sci Rep, 12:5567.

[2]BallabioA, BonifacinoJS, 2020. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat Rev Mol Cell Biol, 21(2):101-118.

[3]ByunS, SeokS, KimYC, et al., 2020. Fasting-induced FGF21 signaling activates hepatic autophagy and lipid degradation via JMJD3 histone demethylase. Nat Commun, 11:807.

[4]ChenLQ, WangK, LongAJ, et al., 2017. Fasting-induced hormonal regulation of lysosomal function. Cell Res, 27(6):748-763.

[5]ChoiSW, ReddyP, 2014. Current and emerging strategies for the prevention of graft-versus-host disease. Nat Rev Clin Oncol, 11(9):536-547.

[6]DehghaniSM, TaghaviSAR, EshraghianA, et al., 2007. Hyperlipidemia in Iranian liver transplant recipients: prevalence and risk factors. J Gastroenterol, 42(9):769-774.

[7]FisherFM, Maratos-FlierE, 2016. Understanding the physiology of FGF21. Annu Rev Physiol, 78:223-241.

[8]GengLL, LamKSL, XuAM, 2020. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol, 16(11):654-667.

[9]HondaresE, IglesiasR, GiraltA, et al., 2011. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem, 286(15):12983-12990.

[10]InagakiT, DutchakP, ZhaoGX, et al., 2007. Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab, 5(6):415-425.

[11]KlionskyDJ, Abdel-AzizAK, AbdelfatahS, et al., 2021. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy, 17(1):1-382.

[12]KurosuH, ChoiM, OgawaY, et al., 2007. Tissue-specific expression of βKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem, 282(37):26687-26695.

[13]LiZ, MiaoZY, DingLL, et al., 2021. Energy metabolism disorder mediated ammonia gas-induced autophagy via AMPK/mTOR/ULK1-Beclin1 pathway in chicken livers. Ecotoxicol Environ Saf, 217:112219.

[14]LingQ, HuangHT, HanYQ, et al., 2020. The tacrolimus-induced glucose homeostasis imbalance in terms of the liver: from bench to bedside. Am J Transplant, 20(3):701-713.

[15]LiuKP, QiuDB, LiangX, et al., 2022. Lipotoxicity-induced STING1 activation stimulates MTORC1 and restricts hepatic lipophagy. Autophagy, 18(4):860-876.

[16]LiuLH, TaoZP, ZhengLD, et al., 2016. FoxO1 interacts with transcription factor EB and differentially regulates mitochondrial uncoupling proteins via autophagy in adipocytes. Cell Death Discov, 2:16066.

[17]MarkanKR, NaberMC, AmekaMK, et al., 2014. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes, 63(12):4057-4063.

[18]MedinaDL, 2021. Lysosomal calcium and autophagy. Int Rev Cell Mol Biol, 362:141-170.

[19]NezichCL, WangCX, FogelAI, et al., 2015. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J Cell Biol, 210(3):435-450.

[20]PereiraMJ, PalmingJ, RizellM, et al., 2013. The immunosuppressive agents rapamycin, cyclosporin A and tacrolimus increase lipolysis, inhibit lipid storage and alter expression of genes involved in lipid metabolism in human adipose tissue. Mol Cell Endocrinol, 365(2):260-269.

[21]QiangWD, ShenTZ, NomanM, et al., 2021. Fibroblast growth factor 21 augments autophagy and reduces apoptosis in damaged liver to improve tissue regeneration in zebrafish. Front Cell Dev Biol, 9:756743.

[22]QinH, SongZY, ZhaoCY, et al., 2022. Liquiritigenin inhibits lipid accumulation in 3T3-L1 cells via mTOR-mediated regulation of the autophagy mechanism. Nutrients, 14(6):1287.

[23]RostaingL, Sánchez-FructuosoA, FrancoA, et al., 2012. Conversion to tacrolimus once-daily from ciclosporin in stable kidney transplant recipients: a multicenter study. Transpl Int, 25(4):391-400.

[24]RyanA, HeathS, CookP, 2018. Dyslipidaemia and cardiovascular risk. BMJ, 360:k835.

[25]SettembreC, di MaltaC, PolitoVA, et al., 2011. TFEB links autophagy to lysosomal biogenesis. Science, 332(6036):1429-1433.

[26]SheQY, BaoJF, WangHZ, et al., 2022. Fibroblast growth factor 21: a “rheostat” for metabolic regulation? Metabolism, 130:155166.

[27]SuiY, ChenJP, 2022. Hepatic FGF21: its emerging role in inter-organ crosstalk and cancers. Int J Biol Sci, 18(15):‍5928-5942.

[28]TaoZP, AslamH, ParkeJ, et al., 2022. Mechanisms of autophagic responses to altered nutritional status. J Nutr Biochem, 103:108955.

[29]VerouxM, TallaritaT, CoronaD, et al., 2011. Sirolimus in solid organ transplantation: current therapies and new frontiers. Immunotherapy, 3(12):1487-1497.

[30]VisvikisO, IhuegbuN, LabedS, et al., 2014. Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity, 40(6):896-909.

[31]WangSY, LiHY, YuanMH, et al., 2022. Role of AMPK in autophagy. Front Physiol, 13:1015500.

[32]WangYH, WangYL, LiF, et al., 2022. Psoralen suppresses lipid deposition by alleviating insulin resistance and promoting autophagy in oleate-induced L02 cells. Cells, 11(7):1067.

[33]WuAM, FengB, YuJ, et al., 2021. Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis. Redox Biol, 46:102131.

[34]YanLS, ZhangSF, LuoG, et al., 2022. Schisandrin B mitigates hepatic steatosis and promotes fatty acid oxidation by inducing autophagy through AMPK/mTOR signaling pathway. Metabolism, 131:155200.

[35]ZhangCZ, ChenKC, WeiRL, et al., 2020. The circFASN/miR-33a pathway participates in tacrolimus-induced dysregulation of hepatic triglyceride homeostasis. Signal Transduct Target Ther, 5:23.

[36]ZhangT, LiuJX, ShenSN, et al., 2020. SIRT3 promotes lipophagy and chaperon-mediated autophagy to protect hepatocytes against lipotoxicity. Cell Death Differ, 27(1):329-344.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE