CLC number:
On-line Access: 2025-03-13
Received: 2023-09-19
Revision Accepted: 2023-12-22
Crosschecked: 2025-03-13
Cited: 0
Clicked: 1629
Citations: Bibtex RefMan EndNote GB/T7714
Xiaoyu HAN, Peijun LI, Meiling JIANG, Yuanyuan CAO, Yingqi WANG, Linhong JIANG, Xiaodan LIU, Weibing WU. Autophagy in skeletal muscle dysfunction of chronic obstructive pulmonary disease: implications, mechanisms, and perspectives[J]. Journal of Zhejiang University Science B, 2025, 26(3): 227-239.
@article{title="Autophagy in skeletal muscle dysfunction of chronic obstructive pulmonary disease: implications, mechanisms, and perspectives",
author="Xiaoyu HAN, Peijun LI, Meiling JIANG, Yuanyuan CAO, Yingqi WANG, Linhong JIANG, Xiaodan LIU, Weibing WU",
journal="Journal of Zhejiang University Science B",
volume="26",
number="3",
pages="227-239",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300680"
}
%0 Journal Article
%T Autophagy in skeletal muscle dysfunction of chronic obstructive pulmonary disease: implications, mechanisms, and perspectives
%A Xiaoyu HAN
%A Peijun LI
%A Meiling JIANG
%A Yuanyuan CAO
%A Yingqi WANG
%A Linhong JIANG
%A Xiaodan LIU
%A Weibing WU
%J Journal of Zhejiang University SCIENCE B
%V 26
%N 3
%P 227-239
%@ 1673-1581
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300680
TY - JOUR
T1 - Autophagy in skeletal muscle dysfunction of chronic obstructive pulmonary disease: implications, mechanisms, and perspectives
A1 - Xiaoyu HAN
A1 - Peijun LI
A1 - Meiling JIANG
A1 - Yuanyuan CAO
A1 - Yingqi WANG
A1 - Linhong JIANG
A1 - Xiaodan LIU
A1 - Weibing WU
J0 - Journal of Zhejiang University Science B
VL - 26
IS - 3
SP - 227
EP - 239
%@ 1673-1581
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300680
Abstract: skeletal muscle dysfunction is a common extrapulmonary comorbidity of chronic obstructive pulmonary disease (COPD) and is associated with decreased quality-of-life and survival in patients. The autophagy lysosome pathway is one of the proteolytic systems that significantly affect skeletal muscle structure and function. Intriguingly, both promoting and inhibiting autophagy have been observed to improve COPD skeletal muscle dysfunction, yet the mechanism is unclear. This paper first reviewed the effects of macroautophagy and mitophagy on the structure and function of skeletal muscle in COPD, and then explored the mechanism of autophagy mediating the dysfunction of skeletal muscle in COPD. The results showed that macroautophagy- and mitophagy-related proteins were significantly increased in COPD skeletal muscle. Promoting macroautophagy in COPD improves myogenesis and replication capacity of muscle satellite cells, while inhibiting macroautophagy in COPD myotubes increases their diameters. Mitophagy helps to maintain mitochondrial homeostasis by removing impaired mitochondria in COPD. autophagy is a promising target for improving COPD skeletal muscle dysfunction, and further research should be conducted to elucidate the specific mechanisms by which autophagy mediates COPD skeletal muscle dysfunction, with the aim of enhancing our understanding in this field.
[1]BaechlerBL, BloembergD, QuadrilateroJ, 2019. Mitophagy regulates mitochondrial network signaling, oxidative stress, and apoptosis during myoblast differentiation. Autophagy, 15(9):1606-1619.
[2]BalnisJ, DrakeLA, SingerDV, et al., 2022. Deaccelerated myogenesis and autophagy in genetically induced pulmonary emphysema. Am J Respir Cell Mol Biol, 66(6):623-637.
[3]BellotG, Garcia-MedinaR, GounonP, et al., 2009. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol, 29(10):2570-2581.
[4]BenzE, TrajanoskaK, LahousseL, et al., 2019. Sarcopenia in COPD: a systematic review and meta-analysis. Eur Respir Rev, 28(154):190049.
[5]BernardS, LeblancP, WhittomF, et al., 1998. Peripheral muscle weakness in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 158(2):629-634.
[6]BujakAL, CraneJD, LallyJS, et al., 2015. AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging. Cell Metab, 21(6):883-890.
[7]CeelenJJM, ScholsAMWJ, van HoofSJ, et al., 2017. Differential regulation of muscle protein turnover in response to emphysema and acute pulmonary inflammation. Respir Res, 18(1):75.
[8]ChenM, ChenZH, WangYY, et al., 2016. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy, 12(4):689-702.
[9]ChenW, ChenYS, LiuYX, et al., 2022. Autophagy in muscle regeneration: potential therapies for myopathies. J Cachexia Sarcopenia Muscle, 13(3):1673-1685.
[10]ChristensonSA, SmithBM, BafadhelM, et al., 2022. Chronic obstructive pulmonary disease. Lancet, 399(10342):2227-2242.
[11]DebigaréR, CôtéCH, HouldFS, et al., 2003. In vitro and in vivo contractile properties of the vastus lateralis muscle in males with COPD. Eur Respir J, 21(2):273-278.
[12]EldeebMA, ThomasRA, RaghebMA, et al., 2022. Mitochondrial quality control in health and in Parkinson’s disease. Physiol Rev, 102(4):1721-1755.
[13]EvansRA, KaplovitchE, BeauchampMK, et al., 2015. Is quadriceps endurance reduced in COPD?: a systematic review. Chest, 147(3):673-684.
[14]FaucherM, SteinbergJG, BarbierD, et al., 2004. Influence of chronic hypoxemia on peripheral muscle function and oxidative stress in humans. Clin Physiol Funct Imaging, 24(2):75-84.
[15]FermontJM, MasconiKL, JensenMT, et al., 2019. Biomarkers and clinical outcomes in COPD: a systematic review and meta-analysis. Thorax, 74(5):439-446.
[16]FiaccoE, CastagnettiF, BianconiV, et al., 2016. Autophagy regulates satellite cell ability to regenerate normal and dystrophic muscles. Cell Death Differ, 23(11):1839-1849.
[17]FivensonEM, LautrupS, SunN, et al., 2017. Mitophagy in neurodegeneration and aging. Neurochem Int, 109:202-209.
[18]FranssenFME, BroekhuizenR, JanssenPP, et al., 2005. Limb muscle dysfunction in COPD: effects of muscle wasting and exercise training. Med Sci Sports Exerc, 37(1):2-9.
[19]García-PratL, Martínez-VicenteM, PerdigueroE, et al., 2016. Autophagy maintains stemness by preventing senescence. Nature, 529(7584):37-42.
[20]GiffordJR, TrinityJD, KwonOS, et al., 2018. Altered skeletal muscle mitochondrial phenotype in COPD: disease vs. disuse. J Appl Physiol, 124(4):1045-1053.
[21]Global Initiatives for Chronic Obstructive Lung Disease, 2023. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (2023 Report). https://goldcopd.org/2023-gold-report-2
[22]GouziF, BlaquièreM, CatteauM, et al., 2018. Oxidative stress regulates autophagy in cultured muscle cells of patients with chronic obstructive pulmonary disease. J Cell Physiol, 233(12):9629-9639.
[23]GuoYT, GoskerHR, ScholsAMWJ, et al., 2013. Autophagy in locomotor muscles of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 188(11):1313-1320.
[24]HeCC, BassikMC, MoresiV, et al., 2012. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature, 481(7382):511-515.
[25]HenrotP, BlervaqueL, DupinI, et al., 2023. Cellular interplay in skeletal muscle regeneration and wasting: insights from animal models. J Cachexia Sarcopenia Muscle, 14(2):745-757.
[26]HussainSNA, SandriM, 2013. Role of autophagy in COPD skeletal muscle dysfunction. J Appl Physiol, 114(9):1273-1281.
[27]ItoA, HashimotoM, TanihataJ, et al., 2022. Involvement of Parkin-mediated mitophagy in the pathogenesis of chronic obstructive pulmonary disease-related sarcopenia. J Cachexia Sarcopenia Muscle, 13(3):1864-1882.
[28]JaitovichA, BarreiroE, 2018. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. What we know and can do for our patients. Am J Respir Crit Care Med, 198(2):175-186.
[29]JakobssonP, JorfeldtL, HenrikssonJ, 1995. Metabolic enzyme activity in the quadriceps femoris muscle in patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 151(2):374-377.
[30]JeongSJ, ZhangXY, Rodriguez-VelezA, et al., 2019. p62/SQSTM1 and selective autophagy in cardiometabolic diseases. Antioxid Redox Signal, 31(6):458-471.
[31]KimJ, KunduM, ViolletB, et al., 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol, 13(2):132-141.
[32]KimKH, JeongYT, OhH, et al., 2013. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med, 19(1):83-92.
[33]KlionskyDJ, Abdel-AzizAK, AbdelfatahS, et al., 2021. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy, 17(1):1-382.
[34]KneppersAEM, LangenRCJ, GoskerHR, et al., 2017. Increased myogenic and protein turnover signaling in skeletal muscle of chronic obstructive pulmonary disease patients with sarcopenia. J Am Med Dir Assoc, 18(7):637.e1-637.e11.
[35]LakerRC, DrakeJC, WilsonRJ, et al., 2017. AMPK phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat Commun, 8:548.
[36]LazarouM, SliterDA, KaneLA, et al., 2015. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature, 524(7565):309-314.
[37]LeermakersPA, ScholsAMWJ, KneppersAEM, et al., 2018. Molecular signalling towards mitochondrial breakdown is enhanced in skeletal muscle of patients with chronic obstructive pulmonary disease (COPD). Sci Rep, 8:15007.
[38]LeermakersPA, RemelsAHV, LangenRCJ, et al., 2020. Pulmonary inflammation-induced alterations in key regulators of mitophagy and mitochondrial biogenesis in murine skeletal muscle. BMC Pulm Med, 20:20.
[39]LemireBB, DebigaréR, DubéA, et al., 2012. MAPK signaling in the quadriceps of patients with chronic obstructive pulmonary disease. J Appl Physiol, 113(1):159-166.
[40]LinA, YaoJ, ZhuangL, et al., 2014. The FoxO‒BNIP3 axis exerts a unique regulation of mTORC1 and cell survival under energy stress. Oncogene, 33(24):3183-3194.
[41]MadorMJ, BozkanatE, 2001. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Respir Res, 2(4):216.
[42]MaltaisF, DecramerM, CasaburiR, et al., 2014. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 189(9):e15-e62.
[43]ManoY, TsukamotoM, WangKY, et al., 2022. Oxidative stress causes muscle structural alterations via p38 MAPK signaling in COPD mouse model. J Bone Miner Metab, 40(6):927-939.
[44]MaoJ, LiY, FengSX, et al., 2020. Bufei Jianpi formula improves mitochondrial function and suppresses mitophagy in skeletal muscle via the adenosine monophosphate-activated protein kinase pathway in chronic obstructive pulmonary disease. Front Pharmacol, 11:587176.
[45]MasonSE, Moreta-MartinezR, LabakiWW, et al., 2022. Longitudinal association between muscle loss and mortality in ever smokers. Chest, 161(4):960-970.
[46]MathurS, BrooksD, CarvalhoCRF, 2014. Structural alterations of skeletal muscle in COPD. Front Physiol, 5:104.
[47]MizushimaN, YoshimoriT, 2007. How to interpret LC3 immunoblotting. Autophagy, 3(6):542-545.
[48]MizushimaN, LevineB, CuervoAM, et al., 2008. Autophagy fights disease through cellular self-digestion. Nature, 451(7182):1069-1075.
[49]NatanekSA, Riddoch-ContrerasJ, MarshGS, et al., 2013. MuRF-1 and atrogin-1 protein expression and quadriceps fiber size and muscle mass in stable patients with COPD. COPD J Chronic Obstruct Pulm Dis, 10(5):618-624.
[50]ParéMF, BaechlerBL, FajardoVA, et al., 2017. Effect of acute and chronic autophagy deficiency on skeletal muscle apoptotic signaling, morphology, and function. Biochim Biophys Acta Mol Cell Res, 1864(4):708-718.
[51]PomièsP, RodriguezJ, BlaquièreM, et al., 2015. Reduced myotube diameter, atrophic signalling and elevated oxidative stress in cultured satellite cells from COPD patients. J Cell Mol Med, 19(1):175-186.
[52]Puente-MaestuL, Pérez-ParraJ, GodoyR, et al., 2009. Abnormal mitochondrial function in locomotor and respiratory muscles of COPD patients. Eur Respir J, 33(5):1045-1052.
[53]Puente-MaestuL, TejedorA, LázaroA, et al., 2012. Site of mitochondrial reactive oxygen species production in skeletal muscle of chronic obstructive pulmonary disease and its relationship with exercise oxidative stress. Am J Respir Cell Mol Biol, 47(3):358-362.
[54]Puente-MaestuL, LázaroA, HumanesB, 2013. Metabolic derangements in COPD muscle dysfunction. J Appl Physiol, 114(9):1282-1290.
[55]Puig-VilanovaE, RodriguezDA, LloretaJ, et al., 2015. Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer. Free Radic Biol Med, 79:91-108.
[56]RikkaS, QuinsayMN, ThomasRL, et al., 2011. Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ, 18(4):721-731.
[57]RoigM, EngJJ, MacintyreDL, et al., 2011. Deficits in muscle strength, mass, quality, and mobility in people with chronic obstructive pulmonary disease. J Cardiopulm Rehabil Prev, 31(2):120-124.
[58]RomanelloV, SandriM, 2016. Mitochondrial quality control and muscle mass maintenance. Front Physiol, 6:422.
[59]SeymourJM, WardK, SidhuPS, et al., 2009. Ultrasound measurement of rectus femoris cross-sectional area and the relationship with quadriceps strength in COPD. Thorax, 64(5):418-423.
[60]ShrikrishnaD, PatelM, TannerRJ, et al., 2012. Quadriceps wasting and physical inactivity in patients with COPD. Eur Respir J, 40(5):1115-1122.
[61]SinghAK, KashyapMP, TripathiVK, et al., 2017. Neuroprotection through rapamycin-induced activation of autophagy and PI3K/Akt1/mTOR/CREB signaling against amyloid-βinduced oxidative stress, synaptic/neurotransmission dysfunction, and neurodegeneration in adult rats. Mol Neurobiol, 54(8):5815-5828.
[62]SpositonT, OliveiraJM, RodriguesA, et al., 2022. Quadriceps weakness associated with mortality in individuals with chronic obstructive pulmonary disease. Ann Phys Rehabil Med, 65(5):101587.
[63]SuLJ, ZhangJH, GomezH, et al., 2023. Mitochondria ROS and mitophagy in acute kidney injury. Autophagy, 19(2):401-414.
[64]SuzukiK, AkiokaM, Kondo-KakutaC, et al., 2013. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J Cell Sci, 126(11):2534-2544.
[65]SwallowEB, ReyesD, HopkinsonNS, et al., 2007. Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax, 62(2):115-120.
[66]TashiroH, TakahashiK, TanakaM, et al., 2021. Skeletal muscle is associated with exercise tolerance evaluated by cardiopulmonary exercise testing in Japanese patients with chronic obstructive pulmonary disease. Sci Rep, 11:15862.
[67]ThériaultME, ParéMÈ, LemireBB, et al., 2014. Regenerative defect in vastus lateralis muscle of patients with chronic obstructive pulmonary disease. Respir Res, 15:35.
[68]TorresSH, de OcaMM, LoebE, et al., 2011. Gender and skeletal muscle characteristics in subjects with chronic obstructive pulmonary disease. Respir Med, 105(1):88-94.
[69]VermeerenMAP, CreutzbergEC, ScholsAMWJ, et al., 2006. Prevalence of nutritional depletion in a large out-patient population of patients with COPD. Respir Med, 100(8):1349-1355.
[70]VestboJ, PrescottE, AlmdalT, et al., 2006. Body mass, fat-free body mass, and prognosis in patients with chronic obstructive pulmonary disease from a random population sample: findings from the Copenhagen City Heart Study. Am J Respir Crit Care Med, 173(1):79-83.
[71]WangP, ShaoBZ, DengZQ, et al., 2018. Autophagy in ischemic stroke. Prog Neurobiol, 163-164:98-117.
[72]World Health Organization, 2019. Chronic obstructive pulmonary disease (COPD). https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd)
[73]ZhangLC, GongHY, SunQW, et al., 2018. Spermidine-activated satellite cells are associated with hypoacetylation in ACVR2B and Smad3 binding to myogenic genes in mice. J Agric Food Chem, 66(2):540-550.
[74]ZorovDB, JuhaszovaM, SollottSJ, 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev, 94(3):909-950.
Open peer comments: Debate/Discuss/Question/Opinion
<1>