CLC number:
On-line Access: 2024-05-01
Received: 2023-11-26
Revision Accepted: 2024-03-31
Crosschecked: 0000-00-00
Cited: 0
Clicked: 398
Kun ZHAO, Yaping JIANG, Wen HUANG, Yukang MAO, Yihui CHEN, Peng LI, Chuanxi YANG. Alamandine inhibits pathological retinal neovascularization by targeting MrgD-mediated HIF-1α/VEGFA pathway[J]. Journal of Zhejiang University Science B, 1998, -1(-1): .
@article{title="Alamandine inhibits pathological retinal neovascularization by targeting MrgD-mediated HIF-1α/VEGFA pathway",
author="Kun ZHAO, Yaping JIANG, Wen HUANG, Yukang MAO, Yihui CHEN, Peng LI, Chuanxi YANG",
journal="Journal of Zhejiang University Science B",
volume="-1",
number="-1",
pages="",
year="1998",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300862"
}
%0 Journal Article
%T Alamandine inhibits pathological retinal neovascularization by targeting MrgD-mediated HIF-1α/VEGFA pathway
%A Kun ZHAO
%A Yaping JIANG
%A Wen HUANG
%A Yukang MAO
%A Yihui CHEN
%A Peng LI
%A Chuanxi YANG
%J Journal of Zhejiang University SCIENCE B
%V -1
%N -1
%P
%@ 1673-1581
%D 1998
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300862
TY - JOUR
T1 - Alamandine inhibits pathological retinal neovascularization by targeting MrgD-mediated HIF-1α/VEGFA pathway
A1 - Kun ZHAO
A1 - Yaping JIANG
A1 - Wen HUANG
A1 - Yukang MAO
A1 - Yihui CHEN
A1 - Peng LI
A1 - Chuanxi YANG
J0 - Journal of Zhejiang University Science B
VL - -1
IS - -1
SP -
EP -
%@ 1673-1581
Y1 - 1998
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300862
Abstract: retinopathy of prematurity (ROP) is a vision-threatening disorder that leads to pathological growth of the retinal vasculature due to hypoxia. Here, we investigated the potential effects of alamandine, a novel heptapeptide in the renin-angiotensin system, on hypoxia-induced retinal neovascularization and its underlying mechanisms. In vivo, the C57BL/6J mice with oxygen-induced retinopathy (OIR) were injected intravitreally with alamandine (1.0 μM/kg per eye). In vitro, human retinal microvascular endothelial cells (HRMECs) were utilized to investigate the effects of alamandine (10 μg/ml) on proliferation, apoptosis, migration, and tubular formation under vascular endothelial growth factor (VEGF) stimulation. The LC-MS/MS analysis revealed a significant decrease in alamandine levels in both the serum and retina of OIR mice when compared to the control group. Next, alamandine ameliorated hypoxia-induced retinal pathological neovascularization and physiologic revascularization in OIR mice. In vitro, alamandine effectively mitigated VEGF-induced proliferation, scratch-wound healing, and tube formation of HRMECs primarily by inhibiting the HIF-1α/VEGF pathway. Further, coincubation with D-Pro7 (Mas-related G protein-coupled receptor D (mrgD) antagonist) hindered the beneficial impacts of alamandine on hypoxia-induced pathological angiogenesis both in vivo and in vitro. Our findings suggested that alamandine could mitigate retinal neovascularization by targeting the mrgD-mediated HIF-1α/VEGFA pathway, providing a potential therapeutic agent for OIR prevention and treatment.
Open peer comments: Debate/Discuss/Question/Opinion
<1>