Full Text:   <4079>

CLC number: TN929.5

On-line Access: 2009-11-30

Received: 2009-03-14

Revision Accepted: 2009-06-04

Crosschecked: 2009-09-29

Cited: 2

Clicked: 9183

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2010 Vol.11 No.1 P.14-26

http://doi.org/10.1631/jzus.C0910150


Blind carrier frequency offset estimation for constant modulus signaling based OFDM systems: algorithm, identifiability, and performance analysis


Author(s):  Wei-yang XU, Bo LU, Xing-bo HU, Zhi-liang HONG

Affiliation(s):  Department of Microelectronics, Fudan University, Shanghai 201203, China; more

Corresponding email(s):   weiyangxu@fudan.edu.cn

Key Words:  Orthogonal frequency-division multiplexing (OFDM), Constant modulus (CM), Carrier frequency offset (CFO), Blind estimation, Multiple-input multiple-output (MIMO)


Wei-yang XU, Bo LU, Xing-bo HU, Zhi-liang HONG. Blind carrier frequency offset estimation for constant modulus signaling based OFDM systems: algorithm, identifiability, and performance analysis[J]. Journal of Zhejiang University Science C, 2010, 11(1): 14-26.

@article{title="Blind carrier frequency offset estimation for constant modulus signaling based OFDM systems: algorithm, identifiability, and performance analysis",
author="Wei-yang XU, Bo LU, Xing-bo HU, Zhi-liang HONG",
journal="Journal of Zhejiang University Science C",
volume="11",
number="1",
pages="14-26",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C0910150"
}

%0 Journal Article
%T Blind carrier frequency offset estimation for constant modulus signaling based OFDM systems: algorithm, identifiability, and performance analysis
%A Wei-yang XU
%A Bo LU
%A Xing-bo HU
%A Zhi-liang HONG
%J Journal of Zhejiang University SCIENCE C
%V 11
%N 1
%P 14-26
%@ 1869-1951
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C0910150

TY - JOUR
T1 - Blind carrier frequency offset estimation for constant modulus signaling based OFDM systems: algorithm, identifiability, and performance analysis
A1 - Wei-yang XU
A1 - Bo LU
A1 - Xing-bo HU
A1 - Zhi-liang HONG
J0 - Journal of Zhejiang University Science C
VL - 11
IS - 1
SP - 14
EP - 26
%@ 1869-1951
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C0910150


Abstract: 
carrier frequency offset (CFO) estimation is critical for orthogonal frequency-division multiplexing (OFDM) based transmissions. In this paper, we present a low-complexity, blind CFO estimator for OFDM systems with constant modulus (CM) signaling. Both single-input single-output (SISO) and multiple-input multiple-output (MIMO) systems are considered. Based on the assumption that the channel keeps constant during estimation, we prove that the CFO can be estimated uniquely and exactly through minimizing the power difference of received data on the same subcarriers between two consecutive OFDM symbols; thus, the identifiability problem is assured. Inspired by the sinusoid-like cost function, curve fitting is utilized to simplify our algorithm. Performance analysis reveals that the proposed estimator is asymptotically unbiased and the mean square error (MSE) exhibits no error floor. We show that this blind scheme can also be applied to a MIMO system. Numerical simulations show that the proposed estimator provides excellent performance compared with existing blind methods.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Ai, B., Yang, Z.X., Pan, C.Y., Ge, J.H., Wang, Y., Lu, Z., 2006. On the synchronization techniques for wireless OFDM systems. IEEE Trans. Broadcast., 52(2):236-244.

[2] Alamouti, S.M., 1998. A simple transmit diversity technique for wireless communications. IEEE J. Sel. Areas Commun., 16(8):1451-1458.

[3] Coulson, A.J., 2001. Maximum likelihood synchronization for OFDM using a pilot symbol: algorithms. IEEE J. Sel. Areas Commun., 19(12):2486-2494.

[4] Gao, F., Nallanathan, A., 2006. Blind maximum likelihood CFO estimation for OFDM systems via polynomial rooting. IEEE Signal Process. Lett., 13(2):73-76.

[5] Gao, F., Cui, T., Nallanathan, A., 2008. Scattered pilots and virtual carriers based frequency offset tracking for OFDM systems: algorithms, identifiability, and performance analysis. IEEE Trans. Commun., 56(4):619-629.

[6] Ghogho, M., Swami, A., Giannakis, G.B., 2001. Optimized Null-Subcarrier Selection for CFO Estimation in OFDM Over Frequency-Selective Fading Channels. IEEE GLOBECOM, 1:202-206.

[7] Hsieh, M.H., Wei, C.H., 1999. A low-complexity frame synchronization and frequency offset compensation scheme for OFDM systems over fading channels. IEEE Trans. Veh. Technol., 48(5):1596-1609.

[8] Huang, D., Letaief, K.B., 2006. Carrier frequency offset estimation for OFDM systems using null subcarriers. IEEE Trans. Commun., 54(5):813-823.

[9] IEEE Std. 802.11a, 1999. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High Speed Physical Layer in the 5 GHz Band. IEEE, Piscataway, NJ 08854-1331.

[10] IEEE Std. 802.16, 2004. IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed Broadband Wireless Access Systems. IEEE, Piscataway. NJ 08854-1331.

[11] Lashkarian, N., Kiaei, S., 2000. Class of cyclic-based estimators for frequency-offset estimation of OFDM systems. IEEE Trans. Commun., 48(12):2139-2149.

[12] Liu, H., Tureli, U., 1998. A high-efficiency carrier estimator for OFDM communications. IEEE Commun. Lett., 2(4):104-106.

[13] Lv, T., Li, H., Chen, J., 2005. Joint estimation of symbol timing and carrier frequency offset of OFDM signal over fast time-varying multipath channels. IEEE Trans. Signal Process., 53(12):4526-4535.

[14] Ma, X., Tepedelenlioglu, C., Giannakis, G.B., Barbarossa S., 2001. Nondata-aided carrier offset estimators for OFDM with null subcarriers: identifiability, algorithms, and performance. IEEE J. Sel. Areas Commun., 19(12):2504-2515.

[15] Meyrs, M.H., Franks, L., 1980. Joint carrier phase and symbol timing recovery for PAM systems. IEEE Trans. Commun., 28(8):1121-1129.

[16] Minn, H., Bhargava, V.K., Letaief, K.B., 2003. A robust timing and frequency synchronization for OFDM systems. IEEE Trans. Wirel. Commun., 2(4):822-839.

[17] Minn, H., Bhargava, V.K., Letaief, K.B., 2006. A combined timing and frequency synchronization and channel estimation for OFDM. IEEE Trans. Commun., 54(3):416-422.

[18] Moose, P.H., 1994. A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Trans. Commun., 42(10):2908-2914.

[19] Morelli, M., D′Andrea, A.N., Mengali, U., 2000. Frequency ambiguity resolution in OFDM systems. IEEE Commun. Lett., 4(4):134-136.

[20] Morelli, M., Kuo, C.C.J., Pun, M.O., 2007. Synchronization techniques for orthogonal frequency division multiple access (OFDMA): a tutorial review. Proc. IEEE, 95(7):1394-1427.

[21] O′Hara, B., Petrick, A., 1999. The IEEE 802.11 Handbook: A Designer’s Companion. The Institute of Electrical and Electronics Engineers, Inc.

[22] Pollet, T., van Bladel, M., Moeneclaey, M., 1995. BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise. IEEE Trans. Commun., 43(2):191-193.

[23] Roman, T., Visuri, S., Koivunen, V., 2006. Blind frequency synchronization in OFDM via diagonality criterion. IEEE Trans. Signal Process., 54(8):3125-3135.

[24] Schmidl, T.M., Cox, D.C., 1997. Robust frequency and timing synchronization for OFDM. IEEE Trans. Commun., 45(12):1613-1621.

[25] Stüber, G.L., Barry, J.R., McLaughlin, S.W., Li, Y., Ingram, M.A., Pratt, T.G., 2004. Broadband MIMO-OFDM wireless communications. Proc. IEEE, 92(2):271-294.

[26] Talbot, S.L., Boroujeny, B.F., 2008. Spectral method of blind carrier tracking for OFDM. IEEE Trans. Signal Process., 56(7):2706-2717.

[27] Tureli, U., Liu, H., Zoltowski, M.D., 2000. OFDM blind carrier offset estimation: ESPRIT. IEEE Trans. Commun., 48(9):1459-1461.

[28] Tureli, U., Kivanc, D., Liu, H., 2001. Experimental and analytical studies on a high-resolution OFDM carrier frequency offset estimator. IEEE Trans. Veh. Technol., 50(2):629-643.

[29] Tureli, U., Honan, P.J., Liu, H., 2004. Low-complexity nonlinear least squares carrier offset estimator for OFDM: identifiability, diversity and performance. IEEE Trans. Signal Process., 52(9):2441-2452.

[30] van de Beek, J.J., van de Sandell, M., Börjesson, P.O., 1997. ML estimation of time and frequency offset in OFDM systems. IEEE Trans. Signal Process., 45(7):1800-1805.

[31] van Nee, R., Prasad, R., 2000. OFDM for Wireless Multimedia Communications. Artech House, London, p.33-48.

[32] Yao, Y., Giannakis, G.B., 2005. Blind carrier frequency offset estimation in SISO, MIMO, and multiuser OFDM systems. IEEE Trans. Commun., 53(1):173-183.

[33] Yu, J.H., Su, Y.T., 2004. Pilot-assisted maximum-likelihood frequency-offset estimation for OFDM systems. IEEE Trans. Commun., 52(11):1997-2008.

[34] Zeng, X.N., Ghrayeb, A., 2007. A Blind Carrier Frequency Offset Estimation Scheme for OFDM Systems with Constant Modulus Signaling. IEEE Workshop on Signal Processing Advances in Wireless Communications, p.1-5.

[35] Zeng, X.N., Ghrayeb, A., 2008. A blind carrier frequency offset estimation scheme for OFDM systems with constant modulus signaling. IEEE Trans. Commun., 56(7):1032-1037.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE