CLC number: TP242.6
On-line Access: 2011-02-08
Received: 2009-08-25
Revision Accepted: 2010-12-16
Crosschecked: 2010-12-30
Cited: 10
Clicked: 8020
Yuan-hui Zhang, Wei Wei, Dan Yu, Cong-wei Zhong. A tracking and predicting scheme for ping pong robot[J]. Journal of Zhejiang University Science C, 2011, 12(2): 110-115.
@article{title="A tracking and predicting scheme for ping pong robot",
author="Yuan-hui Zhang, Wei Wei, Dan Yu, Cong-wei Zhong",
journal="Journal of Zhejiang University Science C",
volume="12",
number="2",
pages="110-115",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C0910528"
}
%0 Journal Article
%T A tracking and predicting scheme for ping pong robot
%A Yuan-hui Zhang
%A Wei Wei
%A Dan Yu
%A Cong-wei Zhong
%J Journal of Zhejiang University SCIENCE C
%V 12
%N 2
%P 110-115
%@ 1869-1951
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C0910528
TY - JOUR
T1 - A tracking and predicting scheme for ping pong robot
A1 - Yuan-hui Zhang
A1 - Wei Wei
A1 - Dan Yu
A1 - Cong-wei Zhong
J0 - Journal of Zhejiang University Science C
VL - 12
IS - 2
SP - 110
EP - 115
%@ 1869-1951
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C0910528
Abstract: We describe a new tracking and predicting scheme applied to a lab-made ping pong robot. The robot has a monocular vision system comprised of a camera and a light. We propose an optimized strategy to calibrate the light center using the least square method. An ellipse fitting method is used to precisely locate the center of ball and shadow on the captured image. After the triangulation of the ball position in the world coordinates, a tracking algorithm based on a kalman filter outputs an accurate estimation of the flight states including the ball position and velocity. Furthermore, a neural network model is constructed and trained to predict the following flight path. Experimental results show that this scheme can achieve a good predicting precision and success rate of striking an incoming ball. The robot can achieve a success rate of about 80% to return a flight ball of 5 m/s to the opposite court.
[1]Acosta, L., Rodrigo, J.J., Mendez, J.A., Marichal, G.N., Sigut, M., 2003. Ping-pong player prototype. IEEE Robot. Autom. Mag., 10(4):44-52.
[2]Andersson, R.L., 1987. A Robot Ping-Pong Player: Experiment in Real-Time Intelligent Control. MIT Press, London, England.
[3]Andersson, R.L., 1989. Dynamic sensing in a ping-pong playing robot. IEEE Trans. Robot. Autom., 5(6):728-739.
[4]Basler, 2006. Camera Manual A600 Series Data Sheet. Available from http://www.graftek.com/pdf/Brochures/basler/A600fmanualNEW.pdf [Accessed on Dec. 1, 2007].
[5]Fassler, H., Beyer, H., Wen, J., 1990. A robot ping-pong player: optimized mechanics, high performance 3D vision, and intelligent sensor control. Robotersysteme, 6:161-170.
[6]Forsyth, D.A., Ponce, J., 2002. Computer Vision: a Modern Approach. Prentice Hall, New Jersey, USA.
[7]Gonzalez, R., Woods, R., Eddins, S., 2003. Digital Image Processing Using MATLAB. Prentice-Hall, New Jersey, USA.
[8]Goodwill, S.R., Chin, S.B., Haake, S.J., 2004. Aerodynamics of spinning and non-spinning tennis balls. J. Wind Eng. Ind. Aerodyn., 92(11):935-958.
[9]Haykin, S., 2001. Kalman Filtering and Neural Networks. Wiley, Chichester, UK.
[10]Kalman, R.E., Bucy, R.S., 1961. New results in linear filtering and prediction theory. Trans. ASME Ser. D: J. Basic Eng., 83:95-107.
[11]Kim, T., Seo, Y., Hong, K., 1998. Physics-Based 3D Position Analysis of a Soccer Ball from Monocular Image Sequences. 6th Int. Conf. on Computer Vision, p.721-726.
[12]Matsushima, M., Hashimoto, T., Miyazaki, F., 2003. Learning to the Robot Table Tennis Task-Ball Control & Rally with a Human. IEEE Int. Conf. on Systems, Man and Cybernetics, p.2962-2969.
[13]Matsushima, M., Hashimoto, T., Takeuchi, M., Miyazaki, F., 2005. A learning approach to robotic table tennis. IEEE Trans. Robot., 21(4):767-771.
[14]Miyamoto, H., Kawato, M., 1998. A tennis serve and upswing learning robot based on bi-directional theory. Neur. Networks, 11(7-8):1331-1344.
[15]Miyazaki, F., Matsushima, M., Takeuchi, M., 2006. Learning to Dynamically Manipulate: a Table Tennis Robot Controls a Ball and Rallies with a Human Being. In: Advances in Robot Control. Springer Berlin Heidelberg, p.317-341.
[16]Modi, K.P., Sahin, F., Saber, E., 2005. An Application of Human Robot Interaction: Development of a Ping-Pong Playing Robotic Arm. IEEE Int. Conf. on Systems, Man and Cybernetics, p.1831-1836.
[17]Naghdy, F., Wyatt, J., Tran, S., 1994. A Transputer-Based Architecture for Control of a Robot Ping-Pong Player. In: Parallel Computing and Transputers. IOS Press, New York, p.311-317.
[18]Ogata, K., 2001. Modern Control Engineering. Prentice Hall, New Jersey, USA, p.100-140.
[19]Press, W., Teukolsky, S., Vetterling, W., Flannery, B., 1992. Numerical Recipes in C: the Art of Scientific Computing. Cambridge University Press, Cambridge.
[20]Reid, I., North, A., 1998. 3D Trajectories from a Single Viewpoint Using Shadows. The British Machine Vision Conf., p.863-872.
[21]Resnick, R., Halliday, D., Krane, K.S., 2002. Physics. John Wiley & Sons, Singapore.
[22]Rusdorf, S., Brunnett, G., Lorenz, M., Winkler, T., 2007. Real-time interaction with a humanoid avatar in an immersive table tennis simulation. IEEE Trans. Visual. Comput. Graph., 13(1):15-25.
[23]TOSY, 2008. Citing Electronic Sources of Information. TOSY Robotics JSC. Available from http://www.tosy.com/ [Accessed on Dec. 12, 2009].
[24]White, F.M., 2002. Fluid Mechanics. McGraw-Hill, New York, USA.
[25]Zhang, Y.H., 2009. Citing Electronic Sources of Information. Personal Website of Ping-Pong Robot. Available from https://sites.google.com/site/pprobot/home [Accessed on Dec. 1, 2009].
[26]Zhang, Z., 2000. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell., 22(11):1330-1334.
Open peer comments: Debate/Discuss/Question/Opinion
<1>