Full Text:   <3364>

CLC number: TP393

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2011-12-16

Cited: 2

Clicked: 7018

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2012 Vol.13 No.1 P.1-10

http://doi.org/10.1631/jzus.C1100096


A new forwarding address for next generation networks


Author(s):  A-qun Zhao, Man-gui Liang

Affiliation(s):  School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China

Corresponding email(s):   aqzhao@bjtu.edu.cn

Key Words:  Next generation networks (NGN), Forwarding address, Vector address (VA), Complex network


Share this article to: More |Next Article >>>

A-qun Zhao, Man-gui Liang. A new forwarding address for next generation networks[J]. Journal of Zhejiang University Science C, 2012, 13(1): 1-10.

@article{title="A new forwarding address for next generation networks",
author="A-qun Zhao, Man-gui Liang",
journal="Journal of Zhejiang University Science C",
volume="13",
number="1",
pages="1-10",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1100096"
}

%0 Journal Article
%T A new forwarding address for next generation networks
%A A-qun Zhao
%A Man-gui Liang
%J Journal of Zhejiang University SCIENCE C
%V 13
%N 1
%P 1-10
%@ 1869-1951
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1100096

TY - JOUR
T1 - A new forwarding address for next generation networks
A1 - A-qun Zhao
A1 - Man-gui Liang
J0 - Journal of Zhejiang University Science C
VL - 13
IS - 1
SP - 1
EP - 10
%@ 1869-1951
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1100096


Abstract: 
The forwarding address plays an important role in constructing a communication network. In this paper, a new forwarding address suitable for next generation networks named the vector address (VA) is proposed which is different from the forwarding address coding methods of current networks. The characteristics of the VA are analyzed. complex network theory and a theoretical analysis method are introduced to study the average address length of the VA when used to construct a global network. Simulation experiments in a practical network topology model are carried out to validate the results. The results show that not only can the VA construct a simpler, more secure, and more scalable network, but it also can accommodate many more users than an Internet Protocol (IP) network with the same address length.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Barabási, A.L., Albert, R., 1999. Emergence of scaling in random networks. Science, 286(5439):509-512.

[2]CCITT X.25:1977. Recommendation X.25—Interface Between Data Terminal Equipment (DTE) and Data Circuit-Terminating Equipment (DCE) for Terminals Operating in the Packet Mode on Public Data Networks. International Telegraph and Telephone Consultative Committee (CCITT) Orange Book, Geneva, Switzerland, Vol. VIII-2, p.70-108.

[3]Cheriton, D.R., Gritter, M., 2000. TRIAD: a Scalable Deployable NAT-Based Internet Architecture. Available from http://www-dsg.stanford.edu/papers/triad/triad.html [Accessed on Aug. 2, 2011].

[4]Cohen, R., Havlin, S., 2003. Scale-free networks are ultrasmall. Phys. Rev. Lett., 90(5):058701.

[5]Dellamonica, D., Kohayakawa, Y., Rödl, V., Ruciński, A., 2008. Universality of Random Graphs. Proc. 19th Annual ACM-SIAM Symp. on Discrete Algorithms, p.782-788.

[6]Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N., 2000. Structure of growing networks with preferential linking. Phys. Rev. Lett., 85(21):4633-4636.

[7]Erdǒs, P., Rényi, A., 1960. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci., 5:17-61.

[8]Francis, P., 1993. A near-term architecture for deploying Pip. IEEE Network, 7(3):30-37.

[9]Francis, P., Govindan, R., 1994. Flexible Routing and Addressing for a Next Generation IP. Proc. Conf. on Communications Architectures, Protocols and Applications, p.116-125.

[10]He, D.R., Liu, Z.H., Wang, B.H., 2009. Complex Systems and Complex Networks. Higher Education Press, Beijing, China (in Chinese).

[11]Katz, D., Ford, P.S., 1993. TUBA: replacing IP with CLNP. IEEE Network, 7(3):38-47.

[12]Kaur, H.T., Kalyanaraman, S., Weiss, A., Kanwar, S., Gandhi, A., 2003. BANANAS: an Evolutionary Framework for Explicit and Multipath Routing in the Internet. Proc. ACM SIGCOMM Workshop on Future Directions in Network Architecture, p.277-288.

[13]Li, Y., Cao, H.D., Shan, X.M., Ren, Y., 2008. An estimation formula for the average path length of scale-free networks. Chin. Phys. B, 17(7):2327-2332.

[14]Liang, M.G., 2009a. A Method for Vector Network Address Coding. China Patent ZL200610089302.6 (in Chinese).

[15]Liang, M.G., 2009b. A Method to Build Vector Connection in Vector Network. China Patent ZL200710064804.8 (in Chinese).

[16]Liang, M.G., Zhang, J.X., Wang, S.J., 2008. A New Network Based on Vector Address. IET 2nd Int. Conf. on Wireless, Mobile and Multimedia Networks, p.118-122.

[17]McDysan, D.E., Spohn, D.L., 1998. ATM Theory and Applications. McGraw-Hill, New York, USA, p.1-12.

[18]Medina, A., Lakhina, A., Matta, I., Byers, J., 2001. BRITE: an Approach to Universal Topology Generation. Proc. 9th Int. Symp. on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, p.346-353.

[19]Newman, M.E.J., Watts, D.J., 1999. Renormalization group analysis of the small-world network model. Phys. Lett. A, 263(4-6):341-346.

[20]Newman, M.E.J., Moore, C., Watts, D.J., 2000. Mean field solution of the small-world network model. Phys. Rev. Lett., 84(14):3201-3204.

[21]RFC 791:1981. Internet Protocol. IETF, Fremont, California, USA.

[22]RFC 2460:1998. Internet Protocol, Version 6 (IPv6) Specification. IETF, Fremont, California, USA.

[23]RFC 3031:2001. Multiprotocol Label Switching Architecture. IETF, Fremont, California, USA.

[24]Smith, P., 1993. Frame Relay: Principles and Applications. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, p.159-176.

[25]Stoica, I., Zhang, H., 1998. LIRA: an Approach for Service Differentiation in the Internet. Proc. 8th Int. Workshop on Network and Operating Systems Support for Digital Audio and Video, p.115-128.

[26]Wang, X.F., Li, X., Chen, G.R., 2006. Complex Network Theory and Its Application. Tsinghua University Press, Beijing, China (in Chinese).

[27]Wang, Z.W., Liang, M.G., 2008. Vector Address Routing Protocol for MANET. 9th Int. Conf. on Signal Processing, p.2637-2641.

[28]Wang, Z.W., Liang, M.G., Zhang, J.X., 2008. Vector Switching Scheme (VSS) for Source Routing Protocol of MANET. IET 2nd Int. Conf. on Wireless, Mobile and Multimedia Networks, p.58-61.

[29]Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of ‘small-world’ networks. Nature, 393(6684):440-442.

[30]Yang, X.W., 2003. NIRA: a New Internet Routing Architecture. Proc. ACM SIGCOMM Workshop on Future Directions in Network Architecture, p.301-312.

[31]Zhang, J.X., Liang, M.G., 2008. A Hierarchical Networking Architecture Based on New Switching Address. Proc. Int. Conf. on Advanced Infocomm Technology, p.326-329.

[32]Zhang, J.X., Liang, M.G., 2010. The Third Kind of Communication Network. Proc. 2nd Int. Conf. on Future Computer and Communication, p.764-768.

[33]Zou, Z.Y., Mao, B.H., Hao, H.M., Gao, J.Z., Yang, J.J., 2009. Regular small-world network. Chin. Phys. Lett., 26(11):110502.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE