CLC number: TP393
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2013-10-15
Cited: 1
Clicked: 8207
Omid Abedi, Reza Berangi. Mobility assisted spectrum aware routing protocol for cognitive radio ad hoc networks[J]. Journal of Zhejiang University Science C, 2013, 14(11): 873-886.
@article{title="Mobility assisted spectrum aware routing protocol for cognitive radio ad hoc networks",
author="Omid Abedi, Reza Berangi",
journal="Journal of Zhejiang University Science C",
volume="14",
number="11",
pages="873-886",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1200334"
}
%0 Journal Article
%T Mobility assisted spectrum aware routing protocol for cognitive radio ad hoc networks
%A Omid Abedi
%A Reza Berangi
%J Journal of Zhejiang University SCIENCE C
%V 14
%N 11
%P 873-886
%@ 1869-1951
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1200334
TY - JOUR
T1 - Mobility assisted spectrum aware routing protocol for cognitive radio ad hoc networks
A1 - Omid Abedi
A1 - Reza Berangi
J0 - Journal of Zhejiang University Science C
VL - 14
IS - 11
SP - 873
EP - 886
%@ 1869-1951
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1200334
Abstract: We propose a mobility assisted spectrum aware routing (MASAR) protocol for cognitive radio ad hoc networks (CRAHNs), providing robustness to primary user activity and node mobility. This protocol allows nodes to collect spectrum information during a spectrum management interval followed by a transmission period. Cognitive users discover next hops based on the collected spectrum and mobility information. Using a beaconless mechanism, nodes obtain the mobility information and spectrum status of their neighbors. A geographical routing scheme is adopted to avoid performance degradation specially due to the mobility of the nodes and the activity of the primary users. Our scheme uses two approaches to find either short or stable routes. Since mobility metrics have a significant role in the selection of the next hop, both approaches use a reactive mobility update process assisted by mobility prediction to avoid location errors. MASAR protocol performance is investigated through simulations of different scenarios and compared with that of the most similar protocol, CAODV. The results indicate that MASAR can achieve significant reduction in control overhead as well as improved packet delivery in highly mobile networks.
[1]Akyildiz, I.F., Lee, W.Y., Vuran, M.C., Mohanty, S., 2006. Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Comput. Networks, 50(13):2127-2159.
[2]Akyildiz, I.F., Lee, W.Y., Chowdhury, K.R., 2009. CRAHN: cognitive radio ad hoc networks: research challenges. Ad Hoc Networks J., 7(5):810-836.
[3]Alicherry, M., Bhatia, R., Li, L., 2006. Joint channel assignment and routing for throughput optimization in multi-radio wireless mesh networks. IEEE J. Sel. Areas Commun., 24(11):1960-1971.
[4]Alsaqour, R.A., Abdelhaq, M.S., Alsukour, O.A., 2012. Effect of network parameters on neighbor wireless link breaks in GPSR protocol and enhancement using mobility prediction model. EURASIP J. Wirel. Commun. Network., 2012:171.
[5]Angela, S., Marcello, C., Luigi, P., 2012. Reactive routing for mobile cognitive radio ad hoc networks. Ad Hoc Networks J., 10(5):803-815.
[6]Bai, F., Helmy, A., 2004. A Survey of Mobility Models in Wireless Ad Hoc Networks. In: Wireless Ad Hoc and Sensor Networks. Kluwer Academic Publishers.
[7]Bettstetter, C., 2001. Mobility modeling in wireless networks: categorization, smooth movement, and border effects. ACM SIGMOBILE Mob. Comput. Commun., 5(3):55-66.
[8]Calvo, R.A., Campo, J.P., 2007. Adding Multiple Interface Support in NS-2. Research Report, University of Cantabria.
[9]Cesana, M., Cuomo, F., Ekici, E., 2011. Routing in cognitive radio networks: challenges and solutions. Ad Hoc Networks J., 9(3):228-248.
[10]Cheng, G., Liu, W., Li, Y., Cheng, W., 2007a. Joint On-demand Routing and Spectrum Assignment in Cognitive Radio Networks. IEEE Int. Conf. on Communications, p.6499-6503.
[11]Cheng, G., Liu, W., Li, Y., Cheng, W., 2007b. Spectrum Aware On-demand Routing in Cognitive Radio Networks. IEEE Int. Symp. on New Frontiers in Dynamic Spectrum Access Networks, p.571-574.
[12]Chowdhury, K.R., Felice, M.D., 2009. SEARCH: a routing protocol for mobile cognitive radio ad-hoc networks. Comput. Commun. J., 32(18):1983-1997.
[13]Chowdhury, K.R., Akyildiz, I.F., 2011a. CRP: a routing protocol for cognitive radio ad hoc networks. IEEE J. Sel. Areas Commun., 29(4):794-804.
[14]Chowdhury, K.R., Akyildiz, I.F., 2011b. OFDM based common control channel design for cognitive radio ad hoc networks. IEEE Trans. Mob. Comput., 10(2):228-238.
[15]Draves, R., Padhye, J., Zill, B., 2004. Routing in Multi-radio, Multi-hop Wireless Mesh Networks. Proc. ACM Mobicom, p.114-128.
[16]Felice, M.D., Chowdhury, K.R., Kim, W., Kassler, A., Bononi, L., 2011. End-to-end protocols for cognitive radio ad hoc networks: an evaluation study. Perform. Eval., 68(9):859-875.
[17]Kim, J., Krunz, M., 2011. Spectrum-Aware Beaconless Geographical Routing Protocol for Mobile Cognitive Radio Networks. Global Telecommunications Conf., p.1-5.
[18]Kyasanur, P., Vaidya, N.H., 2005. Routing and Interface Assignment in Multi-channel Multi-interface Wireless Networks. IEEE WCNC, p.2051-2056.
[19]Lee, W.Y., Akyildiz, I.F., 2008. Optimal spectrum sensing framework for cognitive radio networks. IEEE Trans. Wirel. Commun., 7(10):3845-3857.
[20]Lin, X., Rasool, S.A., 2007. A Distributed Joint Channel-assignment, Scheduling and Routing Algorithm for Multi-channel Ad Hoc Wireless Networks. Proc. INFOCOM, p.1118-1126.
[21]Madani, S., Weber, D., Mahlknecht, S., 2010. Position-based routing protocol for low power wireless sensor networks. J. Univ. Comput. Sci., 16(9):1215-1233.
[22]Mauve, M., Widmer, J., Hartenstein, H., 2001. A survey on position-based routing in mobile ad hoc networks. IEEE Networks, 15(6):30-39.
[23]Ni, M., Zhong, Z., Zhao, D., 2011. MPBC: a mobility prediction-based clustering scheme for ad hoc networks. IEEE Trans. Veh. Technol., 60(9):4549-4559.
[24]So, J., Vaidya, N.H., 2004. Multi-channel Mac for Ad hoc Networks: Handling Multi-channel Hidden Terminals using a Single Transceiver. ACM MobiHoc, p.222-233.
[25]Su, W., Lee, S.J., Mario, G., 2001. Mobility prediction and routing in ad hoc wireless networks. Int. J. Network Manag., 11(1):3-30.
[26]Taleb, T., Sakhaee, E., Jamalipour, A., Hashimoto, K., Kato, N., Nemoto, Y., 2007. A stable routing protocol to support ITS services in VANET networks. IEEE Trans. Veh. Technol., 56(6):3337-3347.
[27]Wang, N.C., Chang, S.W., 2005. A reliable on-demand routing protocol for mobile adhoc networks with mobility prediction. Comput. Commun. J., 29(1):123-135.
[28]Wang, Q., Zheng, H., 2006. Route and Spectrum Selection in Dynamic Spectrum Networks. Proc. IEEE CCNC, p.625-629.
[29]Witt, M., Turau, V., 2005. BGR: Blind Geographic Routing for Sensor Networks. Proc. 3rd Int. Workshop on Intelligent Solutions in Embedded Systems, p.51-61.
[30]Xin, C., Xie, B., Shen, C., 2005. A Novel Layered Graph Model for Topology Formation and Routing in Dynamic Spectrum Access Networks. Proc. IEEE DySPAN, p.308-317.
Open peer comments: Debate/Discuss/Question/Opinion
<1>