CLC number: TP391; TP751
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-12-09
Cited: 0
Clicked: 8091
Shao-fan Wang, Chun Li, De-hui Kong, Bao-cai Yin. Extracting hand articulations from monocular depth images using curvature scale space descriptors[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1500126 @article{title="Extracting hand articulations from monocular depth images using curvature scale space descriptors", %0 Journal Article TY - JOUR
Abstract: This paper proposed a framework of hand articulation detection from a monocular depth image using the curvature scale space (CSS) descriptors. The authors extract the hand contour from an input depth image, and obtain the fingertips and finger-valleys of the contour using the local extrema of a modified CSS map of the contour. This is the main contribution their work offers. They also recover undetected fingertips according to the local change of depths of points in the interior of the contour. Compared with traditional appearance-based approaches using either angle detectors or convex hull detectors, the modified CSS descriptor extracts the fingertips and finger-valleys more precisely since it is more robust to noisy or corrupted data; moreover, the local extrema of depths recover the fingertips of bending fingers well while traditional appearance-based approaches hardly work without matching models of hands. Totally, this paper uses a practical method to solve the hand articulation detection problem using depth data only.
基于曲率尺度空间的单视深度图像手部特征提取创新点:提出改进的曲率尺度空间特征描述符,从手形轮廓提取手指的指尖点、指谷点;通过角度区域与手形轮廓及手部深度差异计算未检测的四指指尖;通过五个指根点以及手形轮廓的起始点构成的七边形计算未检测的大拇指指尖。 方法:通过openNI对单幅深度图像提取手部部分并提取手形轮廓点。将传统的曲率尺度空间特征描述符改进为适当阈值范围内的特征点提取算法,从手形轮廓提取手指的指尖点、指谷点;对未检测的指尖点通过角度阈值进行弯曲判断,通过角度区域与手形轮廓及手部深度差异逐一计算未检测的手部特征点。 结论:与传统的基于角度阈值、轮廓凸包等方法相比,改进的曲率尺度空间特征描述鲁棒性更佳,适合从手部轮廓中提取手部的指尖点和指谷点。在此基础上通过角度区域、手形轮廓及手部深度差等方法可逐一计算未检测的手部特征点。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abbasi, S., Mokhtarian, F., Kittler, J., 1999. Curvature scale space image in shape similarity retrieval. Multimedia Syst., 7(6):467-476. ![]() [2]Athitsos, V., Sclaroff, S., 2002. An appearance-based framework for 3D hand shape classification and camera viewpoint estimation. Proc. 5th IEEE Int. Conf. on Automatic Face and Gesture Recognition, p.40-45. ![]() [3]Athitsos, V., Sclaroff, S., 2003. Estimating 3D hand pose from a cluttered image. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.432-439. ![]() [4]Cerezo, T., 2012. 3D hand and finger recognition using Kinect. Technical Report, Universidad de Granada, Spain. Available at http://frantracerkinectft.codeplex.com. ![]() [5]Chang, W.Y., Chen, C.S., Jian, Y.D., 2008. Visual tracking in high-dimensional state space by appearance-guided particle filtering. IEEE Trans. Image Process., 17(7):1054-1067. ![]() [6]de La Gorce, M., Fleet, D.J., Paragios, N., 2011. Model-based 3D hand pose estimation from monocular video. IEEE Trans. Patt. Anal. Mach. Intell., 33(9):1793-1805. ![]() [7]Feng, Z., Yang, B., Chen, Y., et al., 2011. Features extraction from hand images based on new detection operators. Patt. Recog., 44(5):1089-1105. ![]() [8]Keskin, C., Kıraç, F., Kara, Y.E., et al., 2011. Real time hand pose estimation using depth sensors. In: Fossati, A., Gall, J., Grabner, H., et al. (Eds.), Consumer Depth Cameras for Computer Vision, Springer, London, p.119-137. ![]() [9]Kirac, F., Kara, Y.E., Akarun, L., 2014. Hierarchically constrained 3D hand pose estimation using regression forests from single frame depth data. Patt. Recog. Lett., 50:91-100. ![]() [10]Lee, D., Lee, S., 2011. Vision-based finger action recognition by angle detection and contour analysis. ETRI J., 33(3):415-422. ![]() [11]Ma, Z., Wu, E., 2014. Real-time and robust hand tracking with a single depth camera. Vis. Comput., 30(10):1133-1144. ![]() [12]Maisto, M., Panella, M., Liparulo, L., et al., 2013. An accurate algorithm for the identification of fingertips using an RGB-D camera. IEEE J. Emerg. Sel. Topics Circ. Syst., 3(2):272-283. ![]() [13]Morshidi, M., Tjahjadi, T., 2014. Gravity optimised particle filter for hand tracking. Patt. Recog., 47(1):194-207. ![]() [14]Nagarajan, S., Subashini, T., Ramalingam, V., 2012. Vision based real time finger counter for hand gesture recognition. Int. J. Technol., 2(2):1-5. ![]() [15]Oikonomidis, I., Kyriazis, N., Argyros, A.A., 2011. Efficient model-based 3D tracking of hand articulations using Kinect. BMVC, 1(2):1-11. ![]() [16]Qian, C., Sun, X., Wei, Y., et al., 2014. Realtime and robust hand tracking from depth. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1106-1113. ![]() [17]Ren, Z., Yuan, J., Zhang, Z., 2011. Robust hand gesture recognition based on finger-earth mover’s distance with a commodity depth camera. Proc. 19th ACM Int. Conf. on Multimedia, p.1093-1096. ![]() [18]Rosales, R., Athitsos, V., Sigal, L., et al., 2001. 3D hand pose reconstruction using specialized mappings. Proc. 8th IEEE Int. Conf. on Computer Vision, p.378-385. ![]() [19]Schlattmann, M., Kahlesz, F., Sarlette, R., et al., 2007. Markerless 4 gestures 6 DOF real-time visual tracking of the human hand with automatic initialization. Comput. Graph. Forum, 26(3):467-476. ![]() [20]Tomasi, C., Petrov, S., Sastry, A., 2003. 3D tracking = classification + interpolation. Proc. 9th IEEE Int. Conf. on Computer Vision, p.1441-1448. ![]() [21]Tompson, J., Stein, M., Lecun, Y., et al., 2014. Real-time continuous pose recovery of human hands using convolutional networks. ACM Trans. Graph., 33(5):169.1-169.10. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>