CLC number: O441.5
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-01-06
Cited: 0
Clicked: 7258
Yin Zhao, Hong-guang Xu, Qin-yu Zhang. An analysis in metal barcode label design for reference[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1500212 @article{title="An analysis in metal barcode label design for reference", %0 Journal Article TY - JOUR
Abstract: This paper introduces an analytical technique for the magnetic scalar potential induced by the interaction of high frequency inducer with a metal barcode label containing multiple narrow saw-cut notches. The analytical technique is potentially interesting.
金属条码标签设计参考中的解析分析创新点:将无损探伤中交流场测量技术应用于金属条码标签的检测识别,从而克服了金属条码标签抗污损能力差的缺点。 方法:将无损探伤中交流场测量技术应用于金属标签的检测识别中。利用薄膜场理论中刻痕处磁标位势的边界方程和二维傅立叶变换,给出高频线圈激励多刻痕金属标签条件下,金属标签上方空间中磁标位势的解析解,并给出磁场强度分布。通过对空间磁场强度的仿真,定性分析金属标签基底材质、刻痕和激励线圈属性等因素对金属标签识别的影响,为金属标签的设计提供参考。 结论:金属标签基底材质、刻痕和激励线圈属性等因素对金属标签检测识别的分辨能力影响为:(1)ACFM在精确定位刻痕时应选择幅度检测的方式;(2)金属标签基底材料应选择相对磁导率较大的金属;(3)刻痕的位置应尽量靠近激励线圈的中心区域;(4)刻痕深度选择4-8 mm为宜;(5)相比于圆形激励线圈,菱形激励线圈可以提高对刻痕的分辨能力;(6)相比于大尺寸激励线圈,小尺寸激励线圈可以提高对刻痕的分辨能力;(7)相比于小尺寸激励线圈,大尺寸激励线圈可以扩大可分辨区间;(8)通过提高激励频率,可提高ACFM检测过程中抗噪声干扰的能力。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Amineh, R.K., Ravan, M., Sadeghi, S.H.H., et al., 2008. Using AC field measurement data at an arbitrary liftoff distance to size long surface-breaking cracks in ferrous metals. NDT & E Int., 41(3):169-177. ![]() [2]Auld, B.A., Moulder, J.C., 1999. Review of advances in quantitative eddy current nondestructive evaluation. J. Nondestruct. Eval., 18(1):3-36. ![]() [3]Bowler, J.R., 1994. Eddy-current interaction with an ideal crack. I. the forward problem. J. Appl. Phys., 75(12): 8128-8137. ![]() [4]Bowler, J.R., Harfield, N., 1998. Evaluation of probe impedance due to thin-skin eddy-current interaction with surface cracks. IEEE Trans. Magnet., 34(2):515-523. ![]() [5]Bowler, J.R., Sabbagh, L., Sabbagh, H., 1989. A theoretical and computational model of eddy-current probes incorporating volume integral and conjugate gradient methods. IEEE Trans. Magnet., 25(3):2650-2664. ![]() [6]Bowler, J.R., Sabbagh, L.D., Sabbagh, H.A., 1990. Eddy-current probe impedance due to a surface slot in a conductor. IEEE Trans. Magnet., 26(2):889-892. ![]() [7]Bowler, J.R., Theodoulidis, T.P., Poulakis, N., 2012. Eddy current probe signals due to a crack at a right-angled corner. IEEE Trans. Magnet., 48(12):4735-4746. ![]() [8]Ditchburn, R.J., Burke, S.K., Posada, M., 2003. Eddy-current nondestructive inspection with thin spiral coils: long cracks in steel. J. Nondestruct. Eval., 22(2):63-77. ![]() [9]Dodd, C.V., Deeds, W.E., 1968. Analytical solutions to eddy-current probe-coil problems. J. Appl. Phys., 39:2829-2838. ![]() [10]French, P.C., Bond, L.J., 1988. Finite-element modeling of eddy-current nondestructive evaluation (NDE). J. Nondestruct. Eval., 7(1):55-69. ![]() [11]Grimberg, R., 2011. Electromagnetic nondestructive evaluation: present and future. Stroj. vestn. J. Mech. Eng., 57(3):204-217. ![]() [12]Lewis, A.M., Michael, D.H., Lugg, M.C., et al., 1988. Thin-skin electromagnetic fields around surface-breaking cracks in metals. J. Appl. Phys., 64:3777-3784. ![]() [13]Michael, D.H., Waechter, R.T., Collins, R., 1982. The measurement of surface cracks in metals by using AC electric fields. Proc. R. Soc. Lond. A, 381(1780):139-157. ![]() [14]Michael, D.H., Lewis, A.M., McIver, M., et al., 1991. Thin-skin electromagnetic fields in the neighbourhood of surface-breaking cracks in metals. Proc. R. Soc. Lond. A, 434(1892):587-603. ![]() [15]Mirshekar-Syahkal, D., Mostafavi, R.F., 1997. Analysis technique for interaction of high-frequency rhombic inducer field with cracks in metals. IEEE Trans. Magnet., 33(3):2291-2298. ![]() [16]Morisue, T., 1982. Magnetic vector potential and electric scalar potential in three-dimensional eddy current problem. IEEE Trans. Magnet., 18(2):531-535. ![]() [17]Mostafavi, R.F., Mirshekar-Syahkal, D., 1999. AC fields around short cracks in metals induced by rectangular coils. IEEE Trans. Magnet., 35(3):2001-2006. ![]() [18]Ostovarzadeh, M.H., Sadeghi, S.H.H., Moini, R., 2011. Field distributions around a long opening in a metallic half space excited by arbitrary-frequency alternating current-carrying wires of arbitrary shape. IEEE Trans. Magnet., 47(11):4600-4610. ![]() [19]Ostovarzadeh, M.H., Sadeghi, S.H.H., Moini, R., et al., 2013. Field distributions around a rectangular crack in a metallic half-space excited by long current-carrying wires with arbitrary frequency. IEEE Trans. Magnet., 49(3):1108-1118. ![]() [20]Presser, M., Barnaghi, P.M., Eurich, M., et al., 2009. The SENSEI project: integrating the physical world with the digital world of the network of the future. IEEE Commun. Mag., 47(4):1-4. ![]() [21]Ravan, M., Sadeghi, S.H.H., Moini, R., 2006. Field distributions around arbitrary shape surface cracks in metals, induced by high-frequency alternating-current-carrying wires of arbitrary shape. IEEE Trans. Magnet., 42(9): 2208-2214. ![]() [22]Salemi, A.H., Sadeghi, S.H.H., Moini, R., 2004. Thin-skin analysis technique for interaction of arbitrary-shape inducer field with long cracks in ferromagnetic metals. NDT & E Int., 37(6):471-479. ![]() [23]Theodoulidis, T., Bowler, J., 2005. Eddy-current interaction of a long coil with a slot in a conductive plate. IEEE Trans. Magnet., 41(4):1238-1247. ![]() [24]Theodoulidis, T., Bowler, J.R., 2010. Interaction of an eddy-current coil with a right-angled conductive wedge. IEEE Trans. Magnet., 46(4):1034-1042. ![]() [25]Tian, G.Y., Sophian, A., 2005. Reduction of lift-off effects for pulsed eddy current NDT. NDT & E Int., 38(4):319-324. ![]() [26]Tian, G.Y., Zhao, Z.X., Baines, R.W., 1998. The research of inhomogeneity in eddy current sensors. Sens. Actuat. A, 69(2):148-151. ![]() [27]Xu, E.X., Simkin, J., 2004. Total and reduced magnetic vector potentials and electrical scalar potential for eddy current calculation. IEEE Trans. Magnet., 40(2):938-940. ![]() [28]Zeng, Z.W., Liu, X., Deng, Y.M., et al., 2007. Reduced magnetic vector potential and electric scalar potential formulation for eddy current modeling. Przegl. Elektrotechn., 83(6):35-37. ![]() [29]Zeng, Z.W., Udpa, L., Udpa, S.S., 2010. Finite-element model for simulation of ferrite-core eddy-current probe. IEEE Trans. Magnet., 46(3):905-909. ![]() [30]Zhou, J., Lugg, M.C., Collins, R., 1999. A non-uniform model for alternating current field measurement of fatigue cracks in metals. Int. J. Appl. Electrom. Mech., 10(3):221-235. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>