CLC number: TP391.4
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-04-18
Cited: 0
Clicked: 7715
Chu-hua Huang, Dong-ming Lu, Chang-yu Diao. A multiscale-contour-based interpolation framework for generating a time-varying quasi-dense point cloud sequence[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1500316 @article{title="A multiscale-contour-based interpolation framework for generating a time-varying quasi-dense point cloud sequence", %0 Journal Article TY - JOUR
Abstract: The proposed method has limited complexity which is good for the intended use (e.g., real-time rendering or at least higher frame rate). On the other hand, the method is still far from being real-time (e.g., 50 seconds/frame) and the degree of scientific innovation is somehow limited as well. On the other hand, the paper is well structured on experiments were performed on real data sets.
基于多尺度轮廓插值生成准密集时变点云模型序列创新点:提出基于多尺度轮廓插值生成时变点云模型序列的方法。利用重建对象轮廓的多尺度时空连续性,完成时变三维模型序列的时空维度插值。 方法:首先,采用基于剪影轮廓原理重建物体关键帧的稀疏三维模型。接着,分析三维模型的轮廓点在点级别、轮廓级别、模型级别的连续性,并在该过程中采用距离图插值来增强轮廓的连续性。然后,采用最近点查找方法获得匹配点对,在三个尺度上对匹配点对进行线性密集化。最后,生成具有良好时空一致性的准密集时变三维模型序列。 结论:利用轮廓多尺度时空连续性能够提高重建对象的形变跟踪速度,且时变三维模型序列具有良好的外观质量。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Ahmed, N., Junejo, I.N., 2013. A system for 3D video acquisition and spatio-temporally coherent 3D animation reconstruction using multiple RGB-D cameras. Int. J. Signal Process. Image Process. Patt. Recogn., 6(2):113-128. ![]() [2]Allain, B., Franco, J.S., Boye, R.E., 2015. An efficient volumetric framework for shape tracking. IEEE Conf. on Computer Vision and Pattern Recognition, p.268-276. ![]() [3]Arita, D., Taniguchi, R., 2001. RPV-II: a stream-based real-time parallel vision system and its application to real-time volume reconstruction. 2nd Int. Workshop on Computer Vision Systems, p.174-189. ![]() [4]Baumgart, B.G., 1974. Geometric Modeling for Computer Vision. PhD Thesis, Stanford University, Stanford, USA. ![]() [5]Bilir, S.C., Yemez, Y., 2012. Non-rigid 3D shape tracking from multiview video. Comput. Vis. Image Understand., 116(11):1121-1134. ![]() [6]Borovikov, E., Sussman, A., Davis, L., 2003. A high performance multi-perspective vision studio. 17th Annual Int. Conf. on Supercomputing, p.348-357. ![]() [7]Cheung, G.K.M., Kanade, T., Bouguet, J.Y., 2000. A real time system for robust 3D voxel reconstruction of human motions. IEEE Conf. on Computer Vision and Pattern Recognition, p.714-720. ![]() [8]Cheung, G.K.M., Baker, S., Kanade, T., 2003. Visual hull alignment and refinement across time: a 3D reconstruction algorithm combining shape-from-silhouette with stereo. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.375-382. ![]() [9]Díaz-Más, L., Muñoz-Salinas, R., Madrid-Cuevas, F.J., et al., 2010. Shape from silhouette using Dempster-Shafer theory. Patt. Recog., 43(6):2119-2131. ![]() [10]Duckworth, T., Roberts, D.J., 2011. Accelerated polyhedral visual hulls using OpenCL. IEEE Virtual Reality Conf., p.203-204. ![]() [11]Franco, J.S., Boyer, E., 2009. Efficient polyhedral modeling from silhouettes. IEEE Trans. Patt. Anal. Mach. Intell., 31(3):414-427. ![]() [12]Furukawa, Y., Ponce, J., 2009. Carved visual hulls for image-based modeling. Int. J. Comput. Vis., 81(1):53-67. ![]() [13]Furukawa, Y., Ponce, J., 2010. Accurate, dense, and robust multiview stereopsis. IEEE Trans. Patt. Anal. Mach. Intell., 32(8):1362-1376. ![]() [14]Haro, G., 2012. Shape from silhouette consensus. Patt. Recogn., 45(9):3231-3244. ![]() [15]Hasler, N., Rosenhahn, B., Thormahlen, T., et al., 2009. Markerless motion capture with unsynchronized moving cameras. IEEE Conf. on Computer Vision and Pattern Recognition, p.224-231. ![]() [16]Hauswiesner, S., Khlebnikov, R., Steinberger, M., et al., 2012. Multi-GPU image-based visual hull rendering. 12th Eurographics Symp. on Parallel Graphics and Visualization, p.119-128. ![]() [17]Hofmann, M.H., Davrila, M.G., 2009. Multi-view 3D human pose estimation combining single-frame recovery, temporal integration and model adaptation. IEEE Conf. on Computer Vision and Pattern Recognition, p.2214-2221. ![]() [18]Huang, C.H., Lu, D.M., Diao, C.Y., 2013. Accelerated visual hulls of complex objects using contribution weights. Proc. 7th Int. Conf. on Image and Graphics, p.685-689. ![]() [19]Huang, C.H., Lu, D.M., Diao, C.Y., 2014a. A point cloud representation using plane-space-local-area-color- consistency. J. Comput.-Aided Des. Comput. Graph., 26(8):1297-1303 (in Chinese). ![]() [20]Huang, C.H., Boyer, E., Navab, N., et al., 2014b. Human shape and pose tracking using keyframes. IEEE Conf. on Computer Vision and Pattern Recognition, p.3446-3453. ![]() [21]Kanaujia, A., Haering, N., Taylor, G., et al., 2011. 3D human pose and shape estimation from multi-view imagery. IEEE Computer Vision and Pattern Recognition Workshops, p.49-56. ![]() [22]Kim, D., Dahyot, R., 2012. Bayesian shape from silhouettes. Int. Workshop on Multimedia Understanding Through Semantics, Computation, and Learning, p.78-89. ![]() [23]Laurentini, A., 1994. The visual hull concept for silhouette-based image understanding. IEEE Trans. Patt. Anal. Mach. Intell., 16(2):150-162. ![]() [24]Li, K., Dai, Q.H., Xu, W.L., 2011. Markerless shape and motion capture from multiview video sequences. IEEE Trans. Circ. Syst. Video Technol., 21(3):320-334. ![]() [25]Liu, Y.B., Dai, Q.H., Xu, W.L., 2010. A point-cloud-based multiview stereo algorithm for free-view-point video. IEEE Trans. Vis. Comput. Graph., 16(3):407-418. ![]() [26]Matsuyama, T., Wu, X.J., Takai, T., et al., 2004. Real-time dynamic 3-D object shape reconstruction and high-fidelity texture mapping for 3-D video. IEEE Trans. Circ. Syst. Video Technol., 14(3):357-369. ![]() [27]Matusik, W., Buehler, C., Raskar, R., et al., 2000. Image-based visual hulls. ACM Special Interest Group on Computer Graphics, p.369-374. ![]() [28]Nakajima, H., Makihara, Y., Hsu, H., et al., 2012. Point cloud transport. 21st Int. Conf. on Pattern Recognition, p.3803-3806. ![]() [29]Nakazawa, M., Mitsugami, I., Makihara, Y., et al., 2012. Dynamic scene reconstruction using asynchronous multiple Kinects. 21st Int. Conf. on Pattern Recognition, p.469-472. ![]() [30]Perez, J.M., Aledo, P.G., Sanchez, P.P., 2012. Real-time voxel-based visual hull reconstruction. Microprocess. Microsyst., 36(5):439-447. ![]() [31]Raeesi N., M.R., Wu, Q.M.J., 2010. A complete visual hull representation using bounding edges. 11th Pacific-Rim Conf. on Multimedia, p.171-182. ![]() [32]Taneja, A., Ballan, L., Pollefeys, M., 2011. Modeling dynamic scenes recorded with freely moving cameras. 10th Asian Conf. on Computer Vision, p.613-626. ![]() [33]Vlasic, D., Peers, P., Baran, I., et al., 2009. Dynamic shape capture using multi-view photometric stereo. ACM Trans. Graph., 28(5):174. ![]() [34]Wang, S.Y., Yu, H.M., 2012. Convex relaxation for a 3D spatiotemporal segmentation model using the primal-dual method. J. Zhejiang Univ.-Sci. C (Comput. & Electron), 13(6):428-439. ![]() [35]Wu, X.J., Takizawa, O., Matsuyama, T., 2006. Parallel pipeline volume intersection for real-time 3D shape reconstruction on a PC cluster. IEEE Int. Conf. on Computer Vision Systems, p.1-4. ![]() [36]Xia, D., Li, D.H., Li, Q.G., 2011. A novel approach for computing exact visual hull from silhouettes. Optik, 122(24):2220-2226. ![]() [37]Zhang, Z., Seah, H.S., Quah, C.K., et al., 2011. A multiple camera system with real-time volume reconstruction for articulated skeleton pose tracking. 17th Int. Multimedia Modeling Conf., p.182-192. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>