CLC number: TP311
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-07-08
Cited: 0
Clicked: 8512
Lov Kumar, Anand Tirkey, Santanu-Ku. Rath. An effective fault prediction model developed using an extreme learning machine with various kernel methods[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1601501 @article{title="An effective fault prediction model developed using an extreme learning machine with various kernel methods", %0 Journal Article TY - JOUR
一种有效的基于不同核函数的极限学习机故障预测模型关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abaei G, Selamat A, Fujita H, 2015. An empirical study based on semi-supervised hybrid self-organizing map for software fault prediction. Knowl-Based Syst, 74:28-39. ![]() [2]Aggarwal KK, Singh Y, Kaur A, et al., 2009. Empirical analysis for investigating the effect of object-oriented metrics on fault proneness: a replicated case study. Softw Process Improv Pract, 14(1):39-62. ![]() [3]Arisholm E, Briand LC, Johannessen EB, 2010. A systematic and comprehensive investigation of methods to build and evaluate fault prediction models. Emp Softw Eng, 83(1):2-17. ![]() [4]Briand LC, Wüst J, Daly JW, et al., 2000. Exploring the relationships between design measures and software quality in object-oriented systems. J Syst Softw, 51(3):245-273. ![]() [5]Camargo Cruz AE, Ochimizu K, 2009. Towards logistic regression models for predicting fault-prone code across software projects. Proc 3rd Int Symp on Empirical Software Engineering and Measurement, p.460-463. ![]() [6]Cartwright M, Shepperd M, 2000. An empirical investigation of an object-oriented software system. IEEE Trans Softw Eng, 26(8):786-796. ![]() [7]Chidamber SR, Kemerer CF, 1991. Towards a metrics suite for object-oriented design. Proc 6th ACM Conf on Object-Oriented Programming Systems, Languages, and Applications, p.197-211. ![]() [8]Chidamber SR, Kemerer CF, 1994. A metrics suite for object-oriented design. IEEE Trans Softw Eng, 20(6):476-493. ![]() [9]Dash M, Liu H, 2003. Consistency-based search in feature selection. Artif Intell, 151(1-2):155-176. ![]() [10]Doraisamy S, Golzari S, Mohd N, et al., 2008. A study on feature selection and classification techniques for automatic genre classification of traditional malay music. ISMIR, p.331-336. ![]() [11]El Emam K, Melo W, Machado JC, 2001. The prediction of faulty classes using object-oriented design metrics. J Syst Softw, 56(1):63-75. ![]() [12]Erturk E, Sezer EA, 2015. A comparison of some soft computing methods for software fault prediction. Exp Syst Appl, 42(4):1872-1879. ![]() [13]Fokaefs M, Mikhaiel R, Tsantalis N, et al., 2011. An empirical study on web service evolution. IEEE Int Conf on Web Services, p.49-56. ![]() [14]Forman G, 2003. An extensive empirical study of feature selection metrics for text classification. J Mach Learn Res, 3(2):1289-1305. ![]() [15]Furlanello C, Serafini M, Merler S, et al., 2003. Entropy-based gene ranking without selection bias for the predictive classification of microarray data. BMC Bioinform, 4(1):54. ![]() [16]Gao K, Khoshgoftaar TM, Wang H, et al., 2011. Choosing software metrics for defect prediction: an investigation on feature selection techniques. Softw Pract Exp, 41(5):579-606. ![]() [17]Goyal R, Chandra P, Singh Y, 2014. Suitability of KNN regression in the development of interaction based software fault prediction models. IERI Proc, 6:15-21. ![]() [18]Gyimothy T, Ferenc R, Siket I, 2005. Empirical validation of object-oriented metrics on open source software for fault prediction. IEEE Trans Softw, 31(10):897-910. ![]() [19]Halstead MH, 1977. Elements of Software Science (Operating and Programming Systems Series). Elsevier Science Inc., New York, NY, USA. ![]() [20]Huang GB, Zhu QY, Siew CK, 2006. Extreme learning machine: theory and applications. Neurocomputing, 70(1):489-501. ![]() [21]Huitt R, Wilde N, 1992. Maintenance support for object-oriented programs. IEEE Trans Softw Eng, 18(12):1038-1044. ![]() [22]Jiang Y, Cukic B, Ma Y, 2008. Techniques for evaluating fault prediction models. Emp Softw Eng, 13(5):561-595. ![]() [23]Jing XY, Ying S, Zhang ZW, et al., 2014a. Dictionary learning based software defect prediction. Proc 36th Int Conf on Software Engineering, p.414-423. ![]() [24]Jing XY, Zhang ZW, Ying S, et al., 2014b. Software defect prediction based on collaborative representation classification. Companion Proc 36th Int Conf on Software Engineering, p.632-633. ![]() [25]Jing XY, Wu F, Dong XW, et al., 2015. Heterogeneous cross-company defect prediction by unified metric representation and CCA-based transfer learning. Proc 10th Joint Meeting on Foundations of Software Engineering, p.496-507. ![]() [26]Jing XY, Wu F, Dong XW, et al., 2017. An improved SDA based defect prediction framework for both within-project and cross-project class-imbalance problems. IEEE Trans Softw Eng, 43(4):321-339. ![]() [27]Jones C, 2010. Software quality in 2010: a survey of the state of the art. http://semat.org/documents/20181/27952/software_quality_survey_2010.pdf/7cf00a73-c290-47fe-a5ff-4449ba32f65b ![]() [28]Kanmani S, Uthariaraj VR, Sankaranarayanan V, et al., 2007. Object-oriented software fault prediction using neural networks. Inform Softw Technol, 49(5):483-492. ![]() [29]Kapila H, Singh S, 2013. Analysis of CK metrics to predict software fault-proneness using Bayesian inference. Int J Comput Appl, 74(2):1-4. ![]() [30]Kohavi R, 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc 14th Int Joint Conf on Artificial Intelligence, p.1137-1143. ![]() [31]Kohavi R, John GH, 1997. Wrappers for feature subset selection. Artif Intell, 97(1):273-324. ![]() [32]Li W, Henry S, 1993. Maintenance metrics for the object-oriented paradigm. Proc 1st Int Software Metrics Symp}, p.52-60. ![]() [33]Lorenz M, Kidd J, 1994. Object-Oriented Software Metrics. Prentice-Hall, Englewood Cliffs, NJ. ![]() [34]Malhotra R, Jain A, 2012. Fault prediction using statistical and machine learning methods for improving software quality. J Inform Process Syst, 8(2):241-262. ![]() [35]Malhotra R, Singh Y, 2011. On the applicability of machine learning techniques for object-oriented software fault prediction. Softw Eng Int J, 1(1):24-37. ![]() [36]McCabe TJ, 1976. A complexity measure. IEEE Trans Softw Eng, 2(4):308-320. ![]() [37]Mende T, Koschke R, 2009. Revisiting the evaluation of defect prediction models. Proc 5th Int Conf on Predictor Models in Software Engineering, p.1-10. ![]() [38]Mende T, Koschke R, 2010. Effort-aware defect prediction models. 14th European Conf on Software Maintenance and Reengineering, p.107-116. ![]() [39]Mishra B, Shukla KK, 2012. Defect prediction for object oriented software using support vector based fuzzy classification model. Int J Comput Appl, 60(15):8-16. ![]() [40]Nagappan N, Williams L, Vouk M, et al., 2005. Early estimation of software quality using in-process testing metrics: a controlled case study. ACM SIGSOFT Softw Eng Notes, 30(4):1-7. ![]() [41]Novakovic J, 2010. The impact of feature selection on the accuracy of Naive Bayes classifier. 18th Telecommunications Forum TELFOR}, p.1113-1116. ![]() [42]Olague HM, Etzkorn LH, Gholston S, et al., 2007. Empirical validation of three software metrics suites to predict fault-proneness of object-oriented classes developed using highly iterative or agile software development processes. IEEE Trans Softw Eng, 33(6):402-419. ![]() [43]Pai GJ, Dugan JB, 2007. Empirical analysis of software fault content and fault proneness using Bayesian methods. IEEE Trans Softw Eng, 33(10):675-686. ![]() [44]Pawlak Z, 1982. Rough sets. Int J Comput Inform Sci, 11(5):341-356. ![]() [45]Plackett RL, 1983. Karl Pearson and the Chi-squared test. Int Statist Rev, 51(1):59-72. ![]() [46]Shatnawi R, Li W, 2008. The effectiveness of software metrics in identifying error-prone classes in post-release software evolution process. J Syst Softw, 81(11):1868-1882. ![]() [47]Singh Y, Kaur A, Malhotra R, 2010. Empirical validation of object-oriented metrics for predicting fault proneness models. Softw Qual J, 18(1):3-35. ![]() [48]Slowinski R, 1992. Intelligent decision support. In: Handbook of Applications and Advances of the Rough Sets Theory. Kluwer Academic Publishers, Dordrecht, p.396. ![]() [49]Tomaszewski P, Haakansson J, Grahn H, et al., 2007. Statistical models vs. expert estimation for fault prediction in modified code—an industrial case study. J Syst Softw, 80(8):1227-1238. ![]() [50]Wagner S, 2006. A literature survey of the quality economics of defect-detection techniques. Proc ACM/IEEE Int Symp on Empirical Software Engineering, p.194-203. ![]() [51]Wang D, Romagnoli JA, 2005. Robust multi-scale principal components analysis with applications to process monitoring. J Process Contr, 15(8):869-882. ![]() [52]Wang T, Zhang Z, Jing X, et al., 2016. Multiple kernel ensemble learning for software defect prediction. Autom Softw Eng, 23(4):569-590. ![]() [53]Zhou Y, Leung H, 2006. Empirical analysis of object-oriented design metrics for predicting high and low severity faults. IEEE Trans Softw Eng, 32(10):771-789. ![]() [54]Zhou Y, Xu B, Leung H, 2010. On the ability of complexity metrics to predict fault-prone classes in object-oriented systems. J Syst Softw, 83(4):660-674. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>