CLC number: TP18
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-01-22
Cited: 0
Clicked: 9025
Nan-ning Zheng, Zi-yi Liu, Peng-ju Ren, Yong-qiang Ma, Shi-tao Chen, Si-yu Yu, Jian-ru Xue, Ba-dong Chen, Fei-yue Wang. Hybrid-augmented intelligence: collaboration and cognition[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1700053 @article{title="Hybrid-augmented intelligence: collaboration and cognition", %0 Journal Article TY - JOUR
混合-增强智能:协作与认知关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Ando, R.K., 2007. Biocreative II gene mention tagging system at IBM Watson. Proc. 2nd BioCreative Challenge Evaluation Workshop, p.101-103. ![]() [2]Ando, R.K., Dredze, M., Zhang, T., 2005. Trec 2005 genomics track experiments at IBM Watson. 14th Text REtrieval Conf., p.1-10. ![]() [3]Atif, Y., Mathew, S.S., 2015. Building a smart campus to support ubiquitous learning. J. Amb. Intell. Human. Comput., 6(2):1-16. ![]() [4]Ball, M.O., Chen, C.Y., Hoffman, R., et al., 2001. Collaborative decision making in air traffic management: current and future research directions. it In: Bianco, L., Dell’Olmo, P., Odoni, A.R. (Eds.), New Concepts and Methods in Air Traffic Management. Springer Berlin Heidelberg, Berlin, Germany, p.17-30. ![]() [5]Barnes, M.J., Chen, J.Y.C., Jentsch, F., et al., 2013. An overview of humans and autonomy for military environments: safety, types of autonomy, agents, and user interfaces. Proc. 10th Int. Conf. on Engineering Psychology and Cognitive Ergonomics: Applications and Services, p.243-252. ![]() [6]Boman, I.L., Bartfai, A., 2015. The first step in using a robot in brain injury rehabilitation: patients’and health-care professionals’perspective. Disab. Rehab. Assist. Technol., 10(5):365-370. ![]() [7]Bradley, A.P., 1997. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Patt. Recogn., 30(7):1145-1159. ![]() [8]Browne, C.B., Powley, E., Whitehouse, D., et al., 2012. A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games, 4(1):1-43. ![]() [9]Campbell, M., Hoane, A.J.Jr., Hsu, F.H., 2002. Deep Blue. Artif. Intell., 134(1-2):57-83. ![]() [10]Chen, D., Yuan, Z., Hua, G., et al., 2016. Multi-timescale collaborative tracking. IEEE Trans. Patt. Anal. Mach. Intell., 39(1):141-155. ![]() [11]Chen, Y., Argentinis, J.D.E., Weber, G., 2016. IBM Watson: how cognitive computing can be applied to big data challenges in life sciences research. Clin. Therap., 38(4):688-701. ![]() [12]Cimbala, S.J., 2012. Artificial Intelligence and National Security. Lexington Books, Lanham, USA. ![]() [13]Denton, E.L., Chintala, S., Fergus, R., et al., 2015. Deep generative image models using a Laplacian pyramid of adversarial networks. Proc. 28th Int. Conf. on Neural Information Processing Systems, p.1486-1494. ![]() [14]de Rocquigny, E., Nicolas, D., Stefano, T., 2008. Uncertainty in Industrial Practice: a Guide to Quantitative Uncertainty Management. John Wiley & Sons, Hoboken, USA. ![]() [15]Dias, M.G., Harris, P., 1988. The effect of make-believe play on deductive reasoning. Br. J. Devel. Psychol., 6(3):207-221. ![]() [16]Dounias, G., 2003. Hybrid computational intelligence in medicine. Proc. Workshop on Intelligent and Adaptive Systems in Medicine. ![]() [17]Eakin, H., Luers, A.L., 2006. Assessing the vulnerability of social-environmental systems. Ann. Rev. Environ. Resourc., 31:1-477. ![]() [18]Ferreira, F.J., Crispim, V.R., Silva, A.X., 2010. Detection of drugs and explosives using neutron computerized tomography and artificial intelligence techniques. Appl. Rad. Isot., 68(6):1012-1017. ![]() [19]Fire, A., Zhu, S.C., 2016. Learning perceptual causality from video. ACM Trans. Intell. Syst. Technol., 7(2):1-22. ![]() [20]Fischbein, H., 2002. Intuition in Science and Mathematics: an Educational Approach. Springer Science & Business Media, Berlin, Germany. ![]() [21]Fjellheim, R., Bratvold, R.R., Herbert, M.C., 2008. CODIO - collaborative decisionmaking in integrated operations. Intelligent Energy Conf. and Exhibition, p.1-7. ![]() [22]Fogel, D.B., 1995. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. Wiley-IEEE Press. ![]() [23]Freyd, J.J., 1983. Representing the dynamics of a static form. Memory Cogn., 11(4):342-346. ![]() [24]Funahashi, K.I., Nakamura, Y., 1993. Approximation of dynamic systems by continuous-time recurrent neural networks. Neur. Netw., 6(6):801-806. ![]() [25]Gil, Y., Greaves, M., Hendler, J., et al., 2014. Amplify scientific discovery with artificial intelligence. Science, 346(6206):171-172. ![]() [26]Gilbert, G.R., Beebe, M.K., 2010. United States Department of Defense Research in Robotic Unmanned Systems for Combat Casualty Care. Report No. RTO-MP-HFM-182, Fort Detrick, Frederick, USA. ![]() [27]Goodfellow, I.J., Shlens, J., Szegedy, C., 2014a. Explaining and harnessing adversarial examples. ePrint Archive, arXiv:1412.6572. ![]() [28]Goodfellow, I.J., Pougetabadie, J., Mirza, M., et al., 2014b. Generative adversarial nets. Advances in Neural Information Processing Systems, p.2672-2680. ![]() [29]Graves, A., Mohamed, A.R., Hinton, G., 2013. Speech recognition with deep recurrent neural networks. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.6645-6649. ![]() [30]Graves, A., Wayne, G., Danihelka, I., 2014. Neural turing machines. ePrint Archive, arXiv:1410.5401. ![]() [31]Graves, A., Wayne, G., Reynolds, M., et al., 2016. Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626):471-476. ![]() [32]Griffiths, T.L., Chater, N., Kemp, C., et al., 2010. Probabilistic models of cognition: exploring representations and inductive biases. Trends Cogn. Sci., 14(8):357-364. ![]() [33]Guilford, J.P., 1967. The Nature of Human Intelligence. McGraw-Hill, New York, USA. ![]() [34]Hagan, M.T., Demuth, H.B., Beale, M.H., et al., 2002. Neural Network Design. PWS Publishing Co., Boston, USA. ![]() [35]Hilovska, K., Koncz, P., 2012. Application of artificial intelligence and data mining techniques to financial markets. ACTA VSFS, 6:62-76. ![]() [36]Hiskens, I.A., Davy, R.J., 2001. Exploring the power flow solution space boundary. IEEE Trans. Power Syst., 16(3):389-395. ![]() [37]Hoffman, R., 1998. Integer Programming Models for Ground-Holding in Air Traffic Flow Management. PhD Thesis, University of Maryland, College Park, USA. ![]() [38]Holland, J.H., 1992. Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press. ![]() [39]Honey, C.J., Thivierge, J.P., Sporns, O., 2010. Can structure predict function in the human brain? NeuroImage, 52(3):766-776. ![]() [40]Hu, P., Zhou, S., Ding, W.Z., et al., 2010. The comprehensive measurement model of the member importance in social networks. Int. Conf. on Management and Service Science, p.1-4. ![]() [41]Hu, P., Wen, C.L., Pan, D., 2013. The mutual relationship among external network, internal resource, and competitiveness of enterprises. Sci. Res. Manag., V(4):90-98 (in Chinese). ![]() [42]Hughes, D., Camp, C., O’Hara, J., et al., 2016. Health resource use following robot-assisted surgery versus open and conventional laparoscopic techniques in oncology: analysis of English secondary care data for radical prostatectomy and partial nephrectomy. BJU Int., 117(6):940-947. ![]() [43]Im, D.Y., Ryoo, Y.J., Kim, D.Y., et al., 2009. Unmanned driving of intelligent robotic vehicle. ISIS Proc. 10th Symp. on Advanced Intelligent Systems, p.213-216. ![]() [44]Ioffe, A.D., 1979. Necessary and sufficient conditions for a local minimum. 3: second order conditions and augmented duality. SIAM J. Contr. Opt., 17(2):266-288. ![]() [45]Janis, I.L., Mann, L., 1977. Decision Making: a Psychological Analysis of Conflict, Choice, and Commitment. Free Press, New York, USA. ![]() [46]Jennings, N.R., 2000. On agent-based software engineering artificial intelligence. Artif. Intell., 117(2):277-296. ![]() [47]Johnson, M., Bradshaw, J.M., Feltovich, P.J., et al., 2014. Coactive design: designing support for interdependence in joint activity. Electr. Eng. Math. Comput. Sci., 3(1):43-49. ![]() [48]Johnson, S., Slaughter, V., Carey, S., 1998. Whose gaze will infants follow? The elicitation of gaze-following in 12-month-olds. Devel. Sci., 1(2):233-238. ![]() [49]Jordan, M.I., 2016. On computational thinking, inferential thinking and data science. Proc. 28th ACM Symp. on Parallelism in Algorithms and Architectures, p.47. ![]() [50]Kourtzi, Z., Kanwisher, N., 2000. Activation in human MT/MST by static images with implied motion. J. Cogn. Neurosci., 12(1):48-55. ![]() [51]Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B., 2015. Human-level concept learning through probabilistic program induction. Science, 350(6266):1332-1338. ![]() [52]Lake, B.M., Ullman, T.D., Tenenbaum, J.B., et al., 2016. Building machines that learn and think like people. Behav. Brain Sci., 22:1-101. ![]() [53]Ledford, H., 2015. How to solve the world’s biggest problems. Nature, 525:308-311. ![]() [54]Lewis, D.D., 1998. Naive (Bayes) at forty: the independence assumption in information retrieval. European Conf. on Machine Learning, p.4-15. ![]() [55]Lillicrap, T.P., Hunt, J.J., Pritzel, A., et al., 2016. Continuous control with deep reinforcement learning. ePrint Archive, arXiv:1509.02971. ![]() [56]Lippmann, R.P., 1987. An introduction to computing with neural nets. IEEE ASSP Mag., 4(2):4-22. ![]() [57]Liyanage, J.P., 2012. Hybrid Intelligence Through Business Socialization and Networking: Managing Complexities in the Digital Era. IGI Global, Hershey, USA. ![]() [58]Marchiori, D., Warglien, M., 2008. Predicting human interactive learning by regret-driven neural networks. Science, 319(5866):1111-1113. ![]() [59]Marr, D., 1977. Artificial intelligence–-a personal view. Artif. Intell., 9(1):37-48. ![]() [60]Martin, J., 2007. The Meaning of the 21st Century: a Vital Blueprint for Ensuring Our Future. Random House. ![]() [61]McCarthy, J., Hayes, P.J., 1987. Some Philosophical Problems from the Standpoint of Artificial Intelligence. Morgan Kaufmann Publishers Inc., Burlington, USA. ![]() [62]Michalski, R.S., Carbonell, J.G., Mitchell, T.M., 1984. Machine Learning: an Artificial Intelligence Approach. Springer Science & Business Media, Berlin, Germany. ![]() [63]Mikolov, T., Karafiát, M., Burget, L., et al., 2010. Recurrent neural network based language model. Conf. of the Int. Speech Communication Association, p.1045-1048. ![]() [64]Minsky, M., 1961. Steps toward artificial intelligence. Proc. IRE, 49(1):8-30. ![]() [65]Mirza, M., Osindero, S., 2014. Conditional generative adversarial nets. ePrint Archive, arXiv:1411.1784. ![]() [66]Mizumoto, M., 1982. Comparison of fuzzy reasoning methods. Fuzzy Sets Syst., 8(3):253-283. ![]() [67]Mnih, V., Kavukcuoglu, K., Silver, D., et al., 2013. Playing Atari with deep reinforcement learning. ePrint Archive, arXiv:1312.5602. ![]() [68]Mnih, V., Kavukcuoglu, K., Silver, D., et al., 2015. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533. ![]() [69]Moran, J., Desimone, R., 1985. Selective Attention Gates Visual Processing in the Extrastriate Cortex. MIT Press, Cambridge, USA. ![]() [70]Muir, B.M., 1994. Trust in automation: part I. Theoretical issues in the study of trust and human intervention in automated systems. Ergonomics, 37(11):1905-1922. ![]() [71]Nash, J.F., 1950. Equilibrium points in n-person games. PNAS, 36(1):48-49. ![]() [72]Navigli, R., Ponzetto, S.P., 2012. Babelnet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell., 193(6):217-250. ![]() [73]Newell, A., Simon, H.A., 1972. Human Problem Solving. Prentice-Hall, Englewood Cliffs, USA. ![]() [74]Nilsson, N.J., 1965. Learning Machines: Foundations of Trainable Pattern-Classifying Systems. McGraw-Hill, New York, USA. ![]() [75]Nissen, M.J., Bullemer, P., 1987. Attentional requirements of learning: evidence from performance measures. Cogn. Psychol., 19(1):1-32. ![]() [76]Noh, H., Hong, S., Han, B., 2015. Learning deconvolution network for semantic segmentation. IEEE Int. Conf. on Computer Vision, p.1520-1528. ![]() [77]Norman, K.A., O’Reilly, R.C., 2003. Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. Psychol. Rev., 110(4):611-646. ![]() [78]Ogura, T., Yamada, J., Yamada, S.I., et al., 1989. A 20 kbit associative memory lSI for artificial intelligence machines. IEEE J. Sol.-State Circ., 24(4):1014-1020. ![]() [79]O’Keefe, J., Nadel, L., 1978. The Hippocampus as a Cognitive Map. Clarendon Press, Oxford. ![]() [80]O’Leary, D.E., 2013. Artificial intelligence and big data. IEEE Intell. Syst., 28(2):96-99. ![]() [81]Pan, Y.H., 2016. Heading toward artificial intelligence 2.0. Engineering, 2(4):409-413. ![]() [82]Park, C.C., Kim, G., 2015. Expressing an image stream with a sequence of natural sentences. Advances in Neural Information Processing Systems, p.73-81. ![]() [83]Poole, D., Mackworth, A., Goebel, R., 1997. Computational Intelligence: a Logical Approach. Oxford University Press, Oxford, UK. ![]() [84]Premack, D., Premack, A.J., 1997. Infants attribute value to the goal-directed actions of self-propelled objects. J. Cogn. Neurosci., 9(6):848-856. ![]() [85]Pylyshyn, Z.W., 1984. Computation and Cognition: Toward a Foundation for Cognitive Science. The MIT Press, Cambridge, Massachusetts, USA. ![]() [86]Rachlin, H., 2012. Making IBM’s computer, Watson, human. Behav. Anal., 35(1):1-16. ![]() [87]Radford, A., Metz, L., Chintala, S., 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. ePrint Archive, arXiv:1511.06434. ![]() [88]Rashevsky, N., 1964. Man-machine interaction in automobile driving. Prog. Biocybern., 42:188-200. ![]() [89]Rasmussen, C.E., 2000. The infinite Gaussian mixture model. Advances in Neural Information Processing Systems, p.554-560. ![]() [90]Rehder, B., Hastie, R., 2001. Causal knowledge and categories: the effects of causal beliefs on categorization, induction, and similarity. J. Exp. Psychol., 130(3):323-360. ![]() [91]Russell, S.J., Norvig, P., 1995. Artificial Intelligence: a Modern Approach. Prentice Hall, Englewood Cliffs, USA. ![]() [92]Salimans, T., Goodfellow, I., Zaremba, W., et al., 2016. Improved techniques for training gans. Advances in Neural Information Processing Systems, p.2226-2234. ![]() [93]Salvi, C., Bricolo, E., Kounios, J., et al., 2016. Insight solutions are correct more often than analytic solutions. Think. Reason., 22(4):443-460. ![]() [94]Samuel, A.L., 1988. Some studies in machine learning using the game of checkers. IBM J. Res. Dev., 44(1-2):206-226. ![]() [95]Saripalli, S., Montgomery, J.F., Sukhatme, G., 2003. Visually guided landing of an unmanned aerial vehicle. IEEE Trans. Robot. Autom., 19(3):371-380. ![]() [96]Saxe, R., Carey, S., 2006. The perception of causality in infancy. ACTA Psychol., 123(1-2):144-165. ![]() [97]Schlottmann, A., Ray, E.D., Mitchell, A., et al., 2006. Perceived physical and social causality in animated motions: spontaneous reports and ratings. ACTA Psychol., 123(1-2):112-143. ![]() [98]Schwartz, T., Zinnikus, I., Krieger, H.U., et al., 2016. Hybrid teams: flexible collaboration between humans, robots and virtual agents. German Conf. on Multiagent System Technologies, p.131-146. ![]() [99]Selfridge, O.G., 1988. Pandemonium: a paradigm for learning. National Physical Laboratory Conf., p.511-531. ![]() [100]Shader, R.I., 2016. Some reflections on IBM Watson and on women’s health. Clin. Therap., 38(1):1-2. ![]() [101]Sharp, C.S., Shakernia, O., Sastry, S.S., 2001. A vision system for landing an unmanned aerial vehicle. IEEE Int. Conf. on Robotics & Automation, p.1720-1727. ![]() [102]Shrivastava, P., 1995. Ecocentric management for a risk society. Acad. Manag. Rev., 20(1):118-137. ![]() [103]Shuaibu, B.M., Norwawi, N.M., Selamat, M.H., et al., 2015. Systematic review of Web application security development model. Artif. Intell. Rev., 43(2):259-276. ![]() [104]Silver, D., Huang, A., Maddison, C.J., et al., 2016. Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484-489. ![]() [105]Simon, H.A., 1969. The Sciences of the Artificial. MIT Press, Cambridge, USA. ![]() [106]Son, D., Lee, J., Qiao, S., et al., 2014. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol., 9(5):397-404. ![]() [107]Sternberg, R.J., 1984. Beyond IQ: a triarchic theory of human intelligence. Br. J. Educat. Stud., 7(2):269-287. ![]() [108]Sternberg, R.J., Davidson, J.E., 1983. Insight in the gifted. Educat. Psychol., 18(1):51-57. ![]() [109]Stone, P., Brooks, R., Brynjolfsson, E., et al., 2016. Artificial Intelligence and Life in 2030. One Hundred Year Study on Artificial Intelligence: Report of the 2015-2016 Study Panel, Stanford University, Stanford, USA. ![]() [110]Sun, Y., Wang, X.G., Tang, X.O., 2014. Deep learning face representation from predicting 10,000 classes. IEEE Conf. on Computer Vision and Pattern Recognition, p.1891-1898. ![]() [111]Szegedy, C., Zaremba, W., Sutskever, I., et al., 2013. Intriguing properties of neural networks. ePrint Archive, arXiv:1312.6199. ![]() [112]Szolovits, P., Patil, R.S., Schwartz, W.B., 1988. Artificial intelligence in medical diagnosis. Ann. Int. Med., 108(1):80-87. ![]() [113]Tenenbaum, J.B., Kemp, C., Griffiths, T.L., et al., 2011. How to grow a mind: statistics, structure, and abstraction. Science, 331(6022):1279-1285. ![]() [114]Thielscher, M., 1997. Ramification and causality. Artif. Intell., 89(1-2):317-364. ![]() [115]Thielscher, M., 2001. The qualification problem: a solution to the problem of anomalous models. Artif. Intell., 131(1-2):1-37. ![]() [116]Thrun, S., Burgard, W., Fox, D., 1998. A probabilistic approach to concurrent mapping and localization for mobile robots. Mach. Learn., 5(3):253-271. ![]() [117]Tolman, E.C., 1948. Cognitive maps in rats and men. Psychol. Rev., 55(4):189-208. ![]() [118]Tremoulet, P.D., Feldman, J., 2000. Perception of animacy from the motion of a single object. Perception, 29(8):943-951. ![]() [119]Tversky, A., Kahneman, D., 1983. Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment. Psychol. Rev., 90(4):293-315. ![]() [120]van den Oord, A., Kalchbrenner, N., Kavukcuoglu, K., 2016. Pixel recurrent neural networks. ePrint Archive, arXiv:1601.06759. ![]() [121]Varaiya, P., 1993. Smart car on smart roads: problems of control. IEEE Trans. Autom. Contr., 38(2):195-207. ![]() [122]Waldrop, M.M., 2015. Autonomous vehicles: no drivers required. Nature, 518(7537):20-23. ![]() [123]Walters, M.L., Koay, K.L., Syrdal, D.S., et al., 2013. Companion robots for elderly people: using theatre to investigate potential users’ views. IEEE Ro-Man, p.691-696. ![]() [124]Wang, F.Y., 2004. Artificial societies, computational experiments, and parallel systems: a discussion on computational theory of complex social-economic systems. Compl. Syst. Compl. Sci., 1(4):25-35. ![]() [125]Wang, F.Y., Wang, X., Li, L.X., et al., 2016. Steps toward parallel intelligence. IEEE/CAA J. Autom. Sin., 3(4):345-348. ![]() [126]Wang, J.J., Ma, Y.Q., Chen, S.T., et al., 2017. Fragmentation knowledge processing and networked artificial. Seieat. Sin. Inform., 47(1):1-22. ![]() [127]Wang, L.M., Xiong, Y.J., Wang, Z., et al., 2016. Temporal segment networks: towards good practices for deep action recognition. LNCS, 9912:20-36. ![]() [128]Wei, P., Zheng, N.N., Zhao, Y.B., et al., 2013. Concurrent action detection with structural prediction. IEEE Int. Conf. on Computer Vision, p.3136-3143. ![]() [129]Wei, P., Zhao, Y., Zheng, N., et al., 2016. Modeling 4D human-object interactions for joint event segmentation, recognition, and object localization. IEEE Trans. Softw. Eng. ![]() [130]Williams, R.J., Zipser, D., 1989. A learning algorithm for continually running fully recurrent neural networks. Neur. Comput., 1(2):270-280. ![]() [131]Williams, W.M., Sternberg, R.J., 1988. Group intelligence: why some groups are better than others. Intelligence, 12(4):351-377. ![]() [132]Xiao, C.Y., Dymetman, M., Gardent, C., 2016. Sequence-based structured prediction for semantic parsing. Meeting of the Association for Computational Linguistics, p.1341-1350. ![]() [133]Yau, S.S., Gupta, S.K.S., Karim, F., et al., 2003. Smart classroom: enhancing collaborative learning using pervasive computing technology. ASEE Annual Conf. and Exposition, p.13633-13642. ![]() [134]Yegnanarayana, B., 1994. Artificial neural networks for pattern recognition. Sadhana, 19(2):189-238. ![]() [135]Youseff, L., Butrico, M., da Silva, D., 2008. Toward a unified ontology of cloud computing. Grid Computing Environments Workshop, p.1-10. ![]() [136]Zadeh, L.A., 1996. Fuzzy logic and approximate reasoning. In: Advances in Fuzzy Systems - Applications and Theory: Volume 6. Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems. World Scientific Publishing, Singapore, p.238-259. ![]() [137]Zhao, Y.Y., Qin, B., Liu, T., 2010. Sentiment analysis. J. Softw., 21(8):1834-1848. ![]() [138]Zheng, N.N., Tang, S.M., Cheng, H., et al., 2004. Toward intelligent driver-assistance and safety warning systems. IEEE Intell. Syst., 19(2):8-11. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>