CLC number: TP391
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2019-04-11
Cited: 0
Clicked: 8082
Ze-bin Wu, Jun-qing Yu. Vector quantization: a review[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1700833 @article{title="Vector quantization: a review", %0 Journal Article TY - JOUR
向量量化综述关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Ahalt SC, Krishnamurthy AK, Chen P, et al., 1990. Competitive learning algorithms for vector quantization. Neur Netw, 3(3):277-290. ![]() [2]Ai LF, Yu JQ, He YF, et al., 2013. High-dimensional indexing technologies for large-scale content-based image retrieval: a review. J Zhejiang Univ-Sci C (Comput & Electron), 14(7):505-520. ![]() [3]Ai LF, Yu JQ, Guan T, et al., 2014. Efficient approximate nearest neighbor search by optimized residual vector quantization. 12th Int Workshop on Content-Based Multimedia Indexing, p.1-4. ![]() [4]Babenko A, Lempitsky V, 2012. The inverted multi-index. IEEE Conf on Computer Vision and Pattern Recognition, p.3069-3076. ![]() [5]Babenko A, Lempitsky V, 2014. Additive quantization for extreme vector compression. IEEE Conf on Computer Vision and Pattern Recognition, p.931-938. ![]() [6]Babenko A, Lempitsky V, 2015. Tree quantization for large-scale similarity search and classification. IEEE Conf on Computer Vision and Pattern Recognition, p.4240-4248. ![]() [7]Barnes CF, Rizvi S, Nasrabadi NM, 1996. Advances in residual vector quantization: a review. IEEE Trans Image Process, 5(2):226-262. ![]() [8]Beyer K, Goldstein J, Ramakrishnan R, et al., 1999. When is “nearest neighbor” meaningful? In: Beeri C, Buneman P (Eds.), Database Theory—ICDT’99. Springer Berlin Heidelberg, p.217-235. ![]() [9]Bezdek JC, Ehrlich R, Full W, 1984. FCM: the fuzzy textitc-means clustering algorithm. Comput Geosci, 10(2-3):191-203. ![]() [10]Bezdek JC, Tsao ECK, Pal NR, 1992. Fuzzy kohonen clustering networks. IEEE Int Conf on Fuzzy Systems, p.1035-1043. ![]() [11]Brandt J, 2010. Transform coding for fast approximate nearest neighbor search in high dimensions. IEEE Conf on Computer Vision and Pattern Recognition, p.1815-1822. ![]() [12]Buzo A, Gray A, Gray R, et al., 1980. Speech coding based upon vector quantization. IEEE Trans Acoust Speech Signal Process, 28(5):562-574. ![]() [13]Chan WY, Gersho A, 1990. Enhanced multistage vector quantization with constrained storage.24th Asilomar Conf on Signals, Systems, and Computers, p.659-663. ![]() [14]Chan WY, Gupta S, Gersho A, 1992. Enhanced multistage vector quantization by joint codebook design. IEEE Trans Commun, 40(11):1693-1697. ![]() [15]Chen HH, Ding JJ, Sheu HT, 2014. Image retrieval based on quadtree classified vector quantization. Multim Tools Appl, 72(2):1961-1984. ![]() [16]Chuang JC, Hu YC, Lo CC, et al., 2013. Improved mean-removed vector quantization scheme for grayscale image coding. Int J Signal Process Image Process Patt Recogn, 6(5):315-332. ![]() [17]Convay JH, Sloane NJA, 1982. Fast quantizing and decoding algorithms for lattice quantizers and codes. IEEE Trans Inform Theory, 28(2):227-232. ![]() [18]Dasgupta S, Freund Y, 2008. Random projection trees and low-dimensional manifolds. 40th Annual ACM Symp on Theory of Computing, p.537-546. ![]() [19]Dasgupta S, Freund Y, 2009. Random projection trees for vector quantization. IEEE Trans Inform Theory, 55(7):3229-3242. ![]() [20]Eriksson T, Agrell E, 1996. Lattice-Based Quantization: Part II. Technical Report No. 18, Chalmers University of Technology, Göteborg, Sweden. ![]() [21]Fischer T, 1986. A pyramid vector quantizer. IEEE Trans Inform Theory, 32(4):568-583. ![]() [22]Foster J, Gray R, Dunham M, 1985. Finite-state vector quantization for waveform coding. IEEE Trans Inform Theory, 31(3):348-359. ![]() [23]Freund Y, Dasgupta S, Kabra M, et al., 2007. Learning the structure of manifolds using random projections. 20th Int Conf on Neural Information Processing Systems, p.473-480. ![]() [24]Ge TZ, He KM, Ke QF, et al., 2013. Optimized product quantization for approximate nearest neighbor search. IEEE Conf on Computer Vision and Pattern Recognition, p.2946-2953. ![]() [25]Ge TZ, He KM, Ke QF, et al., 2014. Optimized product quantization. IEEE Trans Patt Anal Mach Intell, 36(4):744-755. ![]() [26]Gersho A, 1979. Asymptotically optimal block quantization. IEEE Trans Inform Theory, 25(4):373-380. ![]() [27]Gersho A, 1982. On the structure of vector quantizers. IEEE Trans Inform Theory, 28(2):157-166. ![]() [28]Gersho A, Gray R, 1991. Vector Quantization and Signal Compression. Springer, Berlin, Germany. ![]() [29]Gong YC, Lazebnik S, 2011. Iterative quantization: a procrustean approach to learning binary codes. IEEE Conf on Computer Vision and Pattern Recognition, p.817-824. ![]() [30]Gray R, 1984. Vector quantization. IEEE ASSP Mag, 1(2):4-29. ![]() [31]Gray R, Neuhoff DL, 1998. Quantization. IEEE Trans Inform Theory, 44(6):2325-2383. ![]() [32]Guo D, Li CQ, Wu L, 2016. Parametric and nonparametric residual vector quantization optimizations for ANN search. Neurocomputing, 217:92-102. ![]() [33]Hang HM, Woods JW, 1985. Predictive vector quantization of images. IEEE Trans Commun, 33(11):1208-1219. ![]() [34]Heo JP, Lin Z, Yoon SE, 2014. Distance encoded product quantization. IEEE Conf on Computer Vision and Pattern Recognition, p.2139-2146. ![]() [35]Indyk P, Motwani R, 1998. Approximate nearest neighbors: towards removing the curse of dimensionality. $30^text{th}$ Annual ACM Symp on Theory of Computing, p.604-613. ![]() [36]Jégou H, Douze M, Schmid C, 2008. Hamming embedding and weak geometric consistency for large-scale image search. 10th European Conf on Computer Vision, p.304-317. ![]() [37]Jégou H, Douze M, Schmid C, 2010. Product quantization for nearest neighbor search. IEEE Trans Patt Anal Mach Intell, 33(1):117-128. ![]() [38]Jégou H, Perronnin F, Douze M, et al., 2012. Aggregating local image descriptors into compact codes. IEEE Trans Patt Anal Mach Intell, 34(9):1704-1716. ![]() [39]Juang BH, Gray A, 1982. Multiple stage vector quantization for speech coding. IEEE Int Conf on Acoustics, Speech, and Signal Processing, p.597-600. ![]() [40]Kalantidi Y, Avrithis Y, 2014. Locally optimized product quantization for approximate nearest neighbor search. IEEE Conf on Computer Vision and Pattern Recognition, p.2329-2336. ![]() [41]Karayiannis NB, Pai PI, 1995. Fuzzy vector quantization algorithms and their application in image compression. IEEE Trans Image Process, 4(9):1193-1201. ![]() [42]Kieffer J, 1982. Stochastic stability for feedback quantization schemes. IEEE Trans Inform Theory, 28(2):248-254. ![]() [43]Kim T, 1988. New finite state vector quantizers for images. Int Conf on Acoustics, Speech, and Signal Processing, p.1180-1183. ![]() [44]Kohonen T, Huang T, Schroeder M, 1984. Self-Organization and Associative Memory. Springer-Verlag, Berlin, p.3406-3409. ![]() [45]Liu SC, Shao JR, Lu HT, 2017. Generalized residual vector quantization and aggregating tree for large-scale search. IEEE Trans Multim, 19(8):1785-1797. ![]() [46]Lloyd S, 1982. Least squares quantization in PCM. IEEE Trans Inform Theory, 28(2):129-137. ![]() [47]Lowe DG, 1999. Object recognition from local scale-invariant feature. 7th IEEE Int Conf on Computer Vision, p.1150-1157. ![]() [48]Lowe DG, 2004. Distinctive image features from scale-invariant keypoints. Int J Comput Vis, 60(2):91-110. ![]() [49]Martinez J, Clement J, Hoos HH, et al., 2016. Revisiting additive quantization. 14th European Conf on Computer Vision, p.137-153. ![]() [50]Muja M, Lowe DG, 2009. Fast approximate nearest neighbors with automatic algorithm configuration. 4th Int Conf on Computer Vision Theory and Applications, p.331-340. ![]() [51]Nister D, Stewenius H, 2006. Scalable recognition with a vocabulary tree. IEEE Conf on Computer Vision and Pattern Recognition, p.2161-2168. ![]() [52]Norouzi M, Fleet DJ, 2013. Cartesian textitk-means. IEEE Conf on Computer Vision and Pattern Recognition, p.3017-3024. ![]() [53]Oliva A, Torralba A, 2001. Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis, 42(3):145-175. ![]() [54]Ozan EC, Kiranyaz S, Gabbouj M, 2016a. K-subspaces quantization for approximate nearest neighbor search. IEEE Trans Knowl Data Eng, 28(7):1722-1733. ![]() [55]Ozan EC, Kiranyaz S, Gabbouj M, 2016b. Competitive quantization for approximate nearest neighbor search. IEEE Trans Knowl Data Eng, 28(11):2884-2894. ![]() [56]Park M, Gunda K, Gupta H, et al., 2014. Optimized transform coding for approximate KNN search. British Machine Vision Conf, p.1-12. ![]() [57]Patchoo W, Fischer TR, Maddex C, 2013. L1-norm-based coding for lattice vector quantization. Asia-Pacific Signal and Information Association Annual Summit and Conf, p.1-4. ![]() [58]Paulev' e L, J' egou H, Amsaleg L, 2010. Locality sensitive hashing: a comparison of hash function types and querying mechanisms. Patt Recogn Lett, 31(11):1348-1358. ![]() [59]Perronnin F, Dance C, 2007. Fisher kernels on visual vocabularies for image categorization. IEEE Conf on Computer Vision and Pattern Recognition, p.1-8. ![]() [60]Ramamurthi B, Gersho A, 1986. Classified vector quantization of images. IEEE Trans Commun, 34(11):1105-1115. ![]() [61]Sabin M, Gray R, 1982. Product code vector quantizers for speech waveform coding. Global Telecommunications Conf, p.1087-1091. ![]() [62]Sabin M, Gray R, 1984. Product code vector quantizers for waveform and voice coding. IEEE Trans Acoust Speech Signal Process, 32(3):474-488. ![]() [63]Schönemann P, 1966. A generalized solution of the orthogonal Procrustes problem. Psychometrika, 31(1):1-10. ![]() [64]Shannon CE, 1948. A mathematical theory of communication. Bell Syst Tech J, 27(3):379-423. ![]() [65]Shannon CE, 1959. Coding theorems for a discrete source with a fidelity criterion. IRE National Convention Record, Part 4, p.93-126. ![]() [66]Silpa-Anan C, Hartley R, 2008. Optimized KD-trees for fast image descriptor matching. IEEE Conf on Computer Vision and Pattern Recognition, p.1-8. ![]() [67]Sivic J, Zisserman A, 2003. Video Google: a text retrieval approach to object matching in videos. 9th IEEE Int Conf on Computer Vision, p.1470-1477. ![]() [68]Tsekouras GE, Tsolakis DM, 2013. Fuzzy clustering-based vector quantization for image compression. In: Chatterjee A, Siarry P (Eds.), Computational Intelligence in Image Processing. Springer Berlin Heidelberg, p.93-105. ![]() [69]Tsekouras GE, Antonios M, Anagnostopoulos C, et al., 2008. Improved batch fuzzy learning vector quantization for image compression. Inform Sci, 178(20):3895-3907. ![]() [70]Tuytelaars T, Schmid C, 2007. Vector quantizing feature space with a regular lattice. IEEE $11^text{th}$ Int Conf on Computer Vision, p.1-8. ![]() [71]Wang JF, Wang JD, Song JK, et al., 2014. Optimized Cartesian textitk-means. IEEE Trans Knowl Data Eng, 27(1):180-192. ![]() [72]Wei BC, Guan T, Yu JQ, 2014. Projected residual vector quantization for ANN search. IEEE Multim, 21(3):41-51. ![]() [73]Weiss Y, Torralba A, Fergus R, 2008. Spectral hashing. 21th Int Conf on Neural Information Processing Systems, p.1753-1760. ![]() [74]Xia Y, He KM, Wen F, et al., 2013. Joint inverted indexing. IEEE Int Conf on Computer Vision, p.3416-3423. ![]() [75]Yuan JB, Liu XW, 2015a. Product tree quantization for approximate nearest neighbor search. IEEE Int Conf on Image Processing, p.2035-2039. ![]() [76]Yuan JB, Liu XW, 2015b. Transformed residual quantization for approximate nearest neighbor search. arXiv:1512.06925 ![]() [77]Zhang L, Zhang M, Pan Q, et al., 2014. An effective image coding method using lattice vector quantization in wavelet domain. Int J Signal Process Image Process Patt Recogn, 7(2):305-316. ![]() [78]Zhang T, Du C, Wang JD, 2014. Composite quantization for approximate nearest neighbor search. $31^text{st}$ Int Conf on Machine Learning, p.838-846. ![]() [79]Zhang T, Qi GJ, Tang JH, et al., 2015. Sparse composite quantization. IEEE Conf on Computer Vision and Pattern Recognition, p.4548-4556. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>