CLC number: TP338.8
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-06-02
Cited: 0
Clicked: 7305
Citations: Bibtex RefMan EndNote GB/T7714
Zhao-qi Wu, Jin Wei, Fan Zhang, Wei Guo, Guang-wei Xie. MDLB: a metadata dynamic load balancing mechanism based on reinforcement learning[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1900121 @article{title="MDLB: a metadata dynamic load balancing mechanism based on reinforcement learning", %0 Journal Article TY - JOUR
MDLB:一种基于强化学习的元数据动态负载均衡机制1国家数字交换系统工程技术研究中心,中国郑州市,450002 2复旦大学计算机科学技术学院,中国上海市,200433 3复旦大学大数据研究院,中国上海市,200433 摘要:随着信息和数据量增长,面向对象的存储系统已被广泛应用到很多领域,包括Google文件系统、AmazonS3、Hadoop分布式文件系统和Ceph。其中元数据负载均衡在提高整个系统输入/输出性能方面起着重要作用,元数据负载不平衡会导致服务器出现严重的系统性能瓶颈问题。然而现有元数据负载平衡策略缺乏良好动态性和适用性,如基于子树分割或者哈希的负载策略。提出一种基于强化学习的动态负载平衡机制(MDLB)。采用Q_learning算法,所提基于强化学习机制由3个模块组成,即策略选择网络、负载均衡网络和参数更新网络。实验结果表明MDLB算法可根据元数据服务器的性能动态调节负载,在数据量骤变情况下仍具有很好适应性。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Amari SI, Ozeki T, Karakida R, et al., 2018. Dynamics of learning in MLP: natural gradient and singularity revisited. Neur Comput, 30(1):1-33. ![]() [2]Azzedin F, 2013. Towards a scalable HDFS architecture. Proc Int Conf on Collaboration Technologies and Systems, p.155-161. ![]() [3]Chen T, Xiao N, Liu F, 2013. Adaptive metadata load balancing for object storage systems. J Softw, 24(2):331-342 (in Chinese). ![]() [4]Fortunato M, Azar MG, Piot B, et al., 2017. Noisy networks for exploration. https://arxiv.org/abs/1706.10295 ![]() [5]Ghemawat S, Gobioff H, Leung ST, 2003. The Google file system. Proc 19th ACM Symp on Operating Systems Principles, p.29-43. ![]() [6]Hausknecht M, Stone P, 2015. Deep recurrent Q-learning for partially observable MDPs. https://arxiv.org/abs/1507.06527 ![]() [7]Hessel M, Modayil J, van Hasselt H, et al., 2018. Rainbow: combining improvements in deep reinforcement learning. https://arxiv.org/abs/1710.02298 ![]() [8]Hitz D, Lau J, Malcolm M, 1994. File system design for an NFS file server appliance. Proc USENIX Winter Technical Conf, p.9-19. ![]() [9]Howard J, Kazar M, Menees S, et al., 1987. Scale and performance in a distributed file system. ACM SIGOPS Oper Syst Rev, 21(5):1-2. ![]() [10]Hua Y, Zhu YF, Jiang H, et al., 2008. Scalable and adaptive metadata management in ultra large-scale file systems. Proc 28th Int Conf on Distributed Computing Systems, p.403-410. ![]() [11]Kanai S, Fujiwara Y, Yamanaka Y, et al., 2018. Sigsoftmax: reanalysis of the softmax bottleneck. Proc 32nd Int Conf on Neural Information Processing Systems, p.284-294. ![]() [12]Lewis TG, Cook CR, 1988. Hashing for dynamic and static internal tables. Computer, 21(10):45-56. ![]() [13]Li WJ, Xue W, Shu JW, et al., 2006. Dynamic hashing: adaptive metadata management for petabyte-scale file systems. Proc 23rd IEEE/14th NASA Goddard Conf on Mass Storage Systems and Technologies, p.159-164. ![]() [14]Liu Z, Zhou XM, 2007. A metadata management method based on directory path. J Softw, 18(2):236-245 (in Chinese). ![]() [15]Manindra A, Thiagarajan PS, 2004. Lazy rectangular hybrid automata. Proc Int Workshop on Hybrid Systems: Computation and Control, p.1-15. ![]() [16]Mnih V, Kavukcuoglu K, Silver D, et al., 2013. Playing Atari with deep reinforcement learning. https://arxiv.org/abs/1312.5602 ![]() [17]Palankar MR, Iamnitchi A, Ripeanu M, et al., 2008. Amazon S3 for science grids: a viable solution? Proc Int Workshop on Data-Aware Distributed Computing, p.55-64. ![]() [18]Patgiri R, Dev D, Ahmed A, 2017. dMDS: uncover the hidden issues of metadata server design. In: Sa PK, Sahoo MN, Murugappan M, et al. (Eds.), Progress in Intelligent Computing Techniques: Theory, Practice, and Applications. Springer, Singapore, p.531-541. ![]() [19]Satyanarayanan M, Kistler JJ, Kumar P, et al., 1990. Coda: a highly available file system for a distributed workstation environment. IEEE Trans Comput, 39(4):447-459. ![]() [20]Schindelhauer C, Schomaker G, 2005. Weighted distributed hash tables. Proc 7th Annual ACM Symp on Parallelism in Algorithms and Architectures, p.218-227. ![]() [21]Shvachko K, Kuang HR, Radia S, et al., 2010. The Hadoop distributed file system. Proc IEEE 26th Symp on Mass Storage Systems and Technologies, p.1-10. ![]() [22]Stoica I, Morris R, Karger D, et al., 2001. Chord: a scalable peer-to-peer lookup service for Internet applications. Proc Conf on Applications, Technologies, Architectures, and Protocols for Computer Communications, p.149-160. ![]() [23]Sutton RS, Barto AG, 2018. Reinforcement Learning: an Introduction (2nd Ed.). MIT Press, London, UK. ![]() [24]Tzeng GH, Huang JJ, 2011. Multiple Attribute Decision Making: Methods and Applications. Chapman and Hall, New York, USA. ![]() [25]van Hasselt H, Guez A, Silver D, 2016. Deep reinforcement learning with double Q-learning. Proc 30th AAAI Conf on Artificial Intelligence, p.2094-2100. ![]() [26]Wang FY, Nelson M, Oral S, et al., 2013. Performance and scalability evaluation of the Ceph parallel file system. Proc 8th Parallel Data Storage Workshop, p.14-19. ![]() [27]Wang JD, Zhang T, Song JK, et al., 2018. A survey on learning to hash. IEEE Trans Patt Anal Mach Intell, 40(4):769-790. ![]() [28]Wang ZY, Schaul T, Hessel M, et al., 2016. Dueling network architectures for deep reinforcement learning. Proc 33rd Int Conf on Machine Learning, p.1995-2003. ![]() [29]Wu CX, Burns R, 2003. Handling heterogeneity in shared-disk file systems. Proc ACM/IEEE Conf on Supercomputing, Article 7. ![]() [30]Wu JJ, Liu PF, Chung YC, 2010. Metadata partitioning for large-scale distributed storage systems. Proc IEEE 3rd Int Conf on Cloud Computing, p.212-219. ![]() [31]Xiong J, Tang RF, Wu SN, et al., 2005. An efficient metadata distribution policy for cluster file systems. Proc IEEE Int Conf on Cluster Computing, p.1-10. ![]() [32]Zhang HY, Wang K, 2018. Research of dynamic load balancing based on stimulated annealing algorithm. Int J Embed Syst, 10(3):188-195. ![]() [33]Zhang LJ, Cui Y, Luo GC, et al., 2017. Dynamic load balance algorithm for big-data distributed storage. Comput Sci, 44(5):178-183 (in Chinese). ![]() [34]Zhong S, Chen J, Yang YR, 2003. Sprite: a simple, cheat-proof, credit-based system for mobile ad-hoc networks. Proc 22nd Annual Joint Conf of the IEEE Computer and Communications Societies, p.1987-1997. ![]() [35]Zhu YF, Jiang H, Wang J, et al., 2008. HBA: distributed metadata management for large cluster-based storage systems. IEEE Trans Parall Distrib Syst, 19(6):750-763. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>