CLC number: TN911.72
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-06-21
Cited: 0
Clicked: 7879
Yefei Zhang, Zhidong Zhao, Yanjun Deng, Xiaohong Zhang, Yu Zhang. ECGID: a human identification method based on adaptive particle swarm optimization and the bidirectional LSTM model[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2000511 @article{title="ECGID: a human identification method based on adaptive particle swarm optimization and the bidirectional LSTM model", %0 Journal Article TY - JOUR
ECGID:一种基于自适应粒子群优化算法和双向LSTM网络的个体身份识别模型杭州电子科技大学电子信息学院,中国杭州市,300318 摘要:随着日益增长的个人隐私和安全需求,基于生理信号的生物识别技术近年受到越来越多关注。心电信号(electrocardiogram, ECG)的活体采集性和信息隐蔽性使其具有极强抗攻击性。本文针对现有深度学习算法在心电身份识别领域应用中面临的3个主要瓶颈--超参数寻优费时、识别过程缓慢且计算量大、心电采集环境复杂且不稳定,提出一种新的深度神经网络框架,集双向长短期记忆网络(BLSTM)和自适应粒子群优化算法(APSO)于一体,直接从时序信号中学习待识别个体的关键特征表示。该方法避免了超参数选择寻优效率低下且依赖于经验设定的不足,充分利用时序信号的空间信息特征和识别算法对关键特征的记忆特性。为评估算法性能,设计了两种方案模拟个体ECG采集过程中的电极放置位置和采集时间连续性。经4种LSTM网络模型和机器学习算法的实验对比分析,证实所提算法在抑制过拟合和特征自学习方面存在一定优势,训练集、验证集和测试集的平均识别率分别为97.71%、99.41%和98.89%。实验结果表明,本文所提算法具有计算量小、泛化性能高的优势,可有效应用于个体身份识别。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Agrafioti F, Hatzinakos D, 2008. ECG based recognition using second order statistics. Proc 6th Annual Communication Networks and Services Research Conf, p.82-87. ![]() [2]Ahmadi A, Mitchell E, Richter C, et al., 2015. Toward automatic activity classification and movement assessment during a sports training session. IEEE Int Things J, 2(1):23-32. ![]() [3]Bassiouni MM, El-Dahshan ESA, Khalefa W, et al., 2018. Intelligent hybrid approaches for human ECG signals identification. Signal Image Video Process, 12(5):941-949. ![]() [4]Biel L, Pettersson O, Philipson L, et al., 2001. ECG analysis: a new approach in human identification. IEEE Trans Instrum Meas, 50(3):808-812. ![]() [5]Choi GH, Bak ES, Pan SB, 2019. User identification system using 2D resized spectrogram features of ECG. IEEE Access, 7:34862-34873. ![]() [6]Chu YF, Shen HB, Huang KJ, 2019. ECG authentication method based on parallel multi-scale one-dimensional residual network with center and margin loss. IEEE Access, 7:51598-51607. ![]() [7]da Silva Luz EJ, Moreira GJP, Oliveira LS, et al., 2018. Learning deep off-the-person heart biometrics representations. IEEE Trans Inform Forens Secur, 13(5):1258-1270. ![]() [8]Hochreiter S, Schmidhuber J, 1997. Long short-term memory. Neur Comput, 9(8):1735-1780. ![]() [9]Labati RD, Muñoz E, Piuri V, et al., 2019. Deep-ECG: convolutional neural networks for ECG biometric recognition. Patt Recogn Lett, 126:78-85. ![]() [10]Liu JK, Yin LY, He CG, et al., 2018. A multiscale autoregressive model-based electrocardiogram identification method. IEEE Access, 6:18251-18263. ![]() [11]Nuno B, Belo D, Gamboa H, 2020. ECG biometrics using spectrograms and deep neural networks. Int J Mach Learn Comput, 10(2):259-264. ![]() [12]Oh SL, Ng EYK, Tan RS, et al., 2018. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput Biol Med, 102:278-287. ![]() [13]Palaniappan R, Krishnan SM, 2004. Identifying individuals using ECG beats. Proc Int Conf on Signal Processing and Communications, p.569-572. ![]() [14]Pan JP, Tompkins WJ, 1985. A real-time QRS detection algorithm. IEEE Trans Biomed Eng, 32(3):230-236. ![]() [15]Rodriguez A, Laio A, 2014. Clustering by fast search and find of density peaks. Science, 344(6191):1492-1496. ![]() [16]Salloum R, Kuo CCJ, 2017. ECG-based biometrics using recurrent neural networks. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.2062-2066. ![]() [17]Srivastava N, Hinton G, Krizhevsky A, et al., 2014. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res, 15(1):1929-1958. ![]() [18]Tantawi MM, Revett K, Salem AB, et al., 2015. A wavelet feature extraction method for electrocardiogram (ECG)-based biometric recognition. Signal Image Video Process, 9(6):1271-1280. ![]() [19]Wu B, Yang GP, Yang L, et al., 2018. Robust ECG biometrics using two-stage model. Proc 24th Int Conf on Pattern Recognition, p.1062-1067. ![]() [20]Yildirim Ö, 2018. A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Comput Biol Med, 96:189-202. ![]() [21]Yu JR, Si YJ, Liu X, 2017. ECG identification based on PCA-RPROP. Proc 8th Int Conf on Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management, p.419-432. ![]() [22]Zhang QX, Zhou D, Zeng X, 2017. HeartID: a multiresolution convolutional neural network for ECG-based biometric human identification in smart health applications. IEEE Access, 5:11805-11816. ![]() [23]Zhao ZD, Zhang YF, Deng YJ, et al., 2018. ECG authentication system design incorporating a convolutional neural network and generalized S-transformation. Comput Biol Med, 102:168-179. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>