CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-08-29
Cited: 0
Clicked: 2742
Citations: Bibtex RefMan EndNote GB/T7714
Yingbo LI, Zhao LI, Yucong DUAN, Anamaria-Beatrice SPULBER. Physical artificial intelligence (PAI): the next-generation artificial intelligence[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2200675 @article{title="Physical artificial intelligence (PAI): the next-generation artificial intelligence", %0 Journal Article TY - JOUR
物理人工智能:下一代人工智能1海南大学计算机科学与技术学院,中国海口市,570228 2之江实验室,中国杭州市,311121 摘要:人工智能(AI)已经成为各领域创新和社会进步的驱动力。然而,其大多数工业应用集中在信号处理领域,这依赖于不同传感器产生和收集的数据。最近,一些研究人员提出将数字人工智能和物理人工智能结合,这可能带来人工智能理论基础的重大进步。在本文中,我们探讨了物理人工智能的概念并提出两个子领域:集成式物理人工智能和分布式物理人工智能。我们还讨论了物理人工智能可持续发展和治理所面临的挑战和机遇。由于物理人工智能需要连续处理来自边缘、雾和物联网的分布式信号,它可以被看作分布式计算连续系统在人工智能领域的延伸。 Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Alom Z, Taha TM, Yakopcic C, et al., 2018. The history began from AlexNet: a comprehensive survey on deep learning approaches. https://arxiv.org/abs/1803.01164 ![]() [2]Arrieta AB, Díaz-Rodríguez N, Del Ser J, et al., 2020. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inform Fus, 58:82-115. https://doi.org/10.1016/j.inffus.2019.12.012 ![]() [3]Asenjo JC, 2017. Data Masking, Encryption, and Their Effect on Classification Performance: Trade-offs Between Data Security and Utility. PhD Thesis, Nova Southeastern University, Fort Lauderdale, USA. ![]() [4]Belu R, 2013. Artificial intelligence techniques for solar energy and photovoltaic applications. In: Anwar S, Efstathiadis H, Qazi S (Eds.), Handbook of Research on Solar Energy Systems and Technologies. IGI Global, Pennsylvania, USA, p.376-436. ![]() [5]Cheng JF, Chen WH, Tao F, et al., 2018. Industrial IoT in 5G environment towards smart manufacturing. J Ind Inform Integr, 10:10-19. ![]() [6]Cheng LF, Yu T, 2019. A new generation of AI: a review and perspective on machine learning technologies applied to smart energy and electric power systems. Int J Energy Res, 43(6):1928-1973. ![]() [7]Costeira JP, Lima P, 2020. A Simple Guide to Physical AI. https://www.ai4europe.eu/research/simple-guide-physical-ai [Accessed on Jan. 14, 2023]. ![]() [8]Creswell A, White T, Dumoulin V, et al., 2018. Generative adversarial networks: an overview. IEEE Signal Process Mag, 35(1):53-65. ![]() [9]Dafoe A, 2018. AI Governance: a Research Agenda. Centre for the Governance of AI, Future of Humanity Institute, University of Oxford, Oxford, UK. ![]() [10]Dalenogare LS, Benitez GB, Ayala NF, et al., 2018. The expected contribution of Industry 4.0 technologies for industrial performance. Int J Prod Econ, 204:383-394. ![]() [11]Dattner B, Chamorro-Premuzic T, Buchband R, et al., 2019. The legal and ethical implications of using AI in hiring. Harv Busi Rev, 25:1-7. ![]() [12]Deb D, Wiper S, Gong SX, et al., 2018. Face recognition: primates in the wild. Proc IEEE 9th Int Conf on Biometrics Theory, Applications and Systems, p.1-10. ![]() [13]de Fazio R, Giannoccaro NI, Carrasco M, 2021. Wearable devices and IoT applications for symptom detection, infection tracking, and diffusion containment of the COVID-19 pandemic: a survey. Front Inform Technol Electron Eng, 22(11):1413-1442. ![]() [14]Dekhne A, Hastings G, Murnane J, et al., 2019. Automation in Logistics: Big Opportunity, Bigger Uncertainty. https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/automation-in-logistics-big-opportunity-bigger-uncertainty [Accessed on Jan. 14, 2023]. ![]() [15]Deng L, 2016. Deep learning: from speech recognition to language and multimodal processing. APSIPA Trans Signal Inform Process, 5(1):e1. ![]() [16]Frické M, 2019. The knowledge pyramid: the DIKW hierarchy. Knowl Organiz, 46(1):33-46. ![]() [17]Gil L, Liska A, 2019. Security with AI and Machine Learning. O’Reilly Media, Sebastopol, USA. ![]() [18]Güera D, Delp EJ, 2018. Deepfake video detection using recurrent neural networks. Proc 15th IEEE Int Conf on Advanced Video and Signal Based Surveillance, p.1-6. ![]() [19]Hecht-Nielsen R, 1992. Theory of the backpropagation neural network. In: Wechsler H (Ed.), Neural Networks for Perception. Academic Press, Boston, USA, p.65-93. ![]() [20]Janebäck E, Kristiansson M, 2019. Friendly Robot Delivery: Designing an Autonomous Delivery Droid for Collaborative Consumption. Chalmers University of Technology, Gothenburg, Sweden. ![]() [21]Karppi T, Granata Y, 2019. Non-artificial non-intelligence: Amazon’s Alexa and the frictions of AI. AI Soc, 34(4):867-876. ![]() [22]LeCun Y, Bottou L, Bengio Y, et al., 1998. Gradient-based learning applied to document recognition. Proc IEEE, 86(11):2278-2324. ![]() [23]Li H, Zhang ZE, Liu ZJ, 2017. Application of artificial neural networks for catalysis: a review. Catalysts, 7(10):306. ![]() [24]Liao RZ, Chen LP, 2022. An evolutionary note on smart city development in China. Front Inform Technol Electron Eng, 23(6):966-974. ![]() [25]Ma Y, Tsao D, Shum HY, 2022. On the principles of Parsimony and Self-consistency for the emergence of intelligence. Front Inform Technol Electron Eng, 23(9):1298-1323. ![]() [26]Mahesh B, 2020. Machine learning algorithms—a review. Int J Sci Res, 9:381-386. ![]() [27]Marikyan D, Papagiannidis S, Alamanos E, 2019. A systematic review of the smart home literature: a user perspective. Technol Forecast Soc Change, 138:139-154. ![]() [28]May Z, Amaran MH, 2011. Automated oil palm fruit grading system using artificial intelligence. Int J Video Image Process Netw Secur, 11(3):30-35. ![]() [29]Meyer T, Schmitt M, Dietzek B, et al., 2013. Accumulating advantages, reducing limitations: multimodal nonlinear imaging in biomedical sciences—the synergy of multiple contrast mechanisms. J Biophoton, 6(11-12):887-904. ![]() [30]Miriyev A, Kovač M, 2020. Skills for physical artificial intelligence. Nat Mach Intell, 2(11):658-660. ![]() [31]Pan YH, 2017. Special issue on artificial intelligence 2.0. Front Inform Technol Electron Eng, 18(1):1-2. ![]() [32]Ryman-Tubb NF, Krause P, Garn W, 2018. How artificial intelligence and machine learning research impacts payment card fraud detection: a survey and industry benchmark. Eng Appl Artif Intell, 76:130-157. ![]() [33]Srinivasan CR, Rajesh B, Saikalyan P, et al., 2019. A review on the different types of Internet of Things (IoT). J Adv Res Dynam Contr Syst, 11(1):154-158. ![]() [34]Wilson G, Pereyda C, Raghunath N, et al., 2019. Robot-enabled support of daily activities in smart home environments. Cogn Syst Res, 54:258-272. ![]() [35]Xu YZ, Shieh CH, van Esch P, et al., 2020. AI customer service: task complexity, problem-solving ability, and usage intention. Austr Market J, 28(4):189-199. ![]() [36]Yadav N, Yadav A, Kumar M, 2015. An Introduction to Neural Network Methods for Differential Equations. Springer, Dordrecht, the Netherlands. ![]() [37]Yu W, Liang F, He XF, et al., 2017. A survey on the edge computing for the Internet of Things. IEEE Access, 6:6900-6919. ![]() [38]Zhang L, Zhang B, 1999. A geometrical representation of McCulloch-Pitts neural model and its applications. IEEE Trans Neur Netw, 10(4):925-929. ![]() [39]Zhang QS, Zhu SC, 2018. Visual interpretability for deep learning: a survey. Front Inform Technol Electron Eng, 19(1):27-39. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>