CLC number: TN722
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-05-17
Cited: 0
Clicked: 2286
Yao YAO, Zhijiang DAI, Mingyu LI. A novel topology with controllablewideband baseband impedance for power amplifiers[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300074 @article{title="A novel topology with controllablewideband baseband impedance for power amplifiers", %0 Journal Article TY - JOUR
一种可以控制功放的宽带基带阻抗的新型拓扑结构1重庆科技大学智能技术与工程学院,中国重庆市,400065 2重庆大学微电子与通信工程学院,中国重庆市,400065 摘要:本文提出一种新的拓扑结构控制功率放大器(PA)的基带阻抗,以避免在并发双频带模式下性能下降。传统基带阻抗控制通过纯LC网络实现,但局部频点发生谐振后会呈现高阻抗,不能实现连续宽频带基带阻抗控制。本文所提出的结构可以有效避免这一问题,该拓扑结构可以应用于具有宽带信号激励的发射机架构。特别地,通过调整电路参数和增加电路的阶数,可以灵活控制关键频带的阻抗。为证实这一设计思想,设计了一个功率放大器:其饱和输出功率约为46.7 dBm,漏极效率超过68.2%(1.8–2.3 GHz)。在同时双音激励下,即使在5.5 dB的回退功率下,两个频点间距从10至500 MHz,漏极效率也达到40%左右。这些结果表明,所提出的拓扑结构能有效控制宽带的基带阻抗。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Barros DR, Nunes LC, Cabral PM, et al., 2019. Impact of the input baseband terminations on the efficiency of wideband power amplifiers under concurrent band operation. IEEE Trans Microw Theory Techn, 67(12):5127-5138. ![]() [2]Brinkhoff J, Parker AE, 2003. Effect of baseband impedance on FET intermodulation. IEEE Trans Microw Theory Techn, 51(3):1045-1051. ![]() [3]Brinkhoff J, Parker AE, Leung M, 2003. Baseband impedance and linearization of FET circuits. IEEE Trans Microw Theory Techn, 51(12):2523-2530. ![]() [4]Chen XF, Chen WH, Ghannouchi FM, et al., 2013. Enhanced analysis and design method of concurrent dual-band power amplifiers with intermodulation impedance tuning. IEEE Trans Microw Theory Techn, 61(12):4544-4558. ![]() [5]Cui J, Li PP, Sheng WX, 2023. High linearity U-band power amplifier design: a novel intermodulation point analysis method. Front Inform Technol Electron Eng, 24(1):176-186. ![]() [6]Feng WJ, Wu WB, Zhou XY, et al., 2022. Broadband high-efficiency quasi-class-J power amplifier based on nonlinear output capacitance effect. IEEE Trans Circ Syst II Expr Briefs, 69(4):2091-2095. ![]() [7]Kilinc S, Yarman BS, Ozoguz S, 2022. Broadband power amplifier design via fictitious matching. IEEE Trans Circ Syst II Expr Briefs, 69(12):4844-4848. ![]() [8]Latha YMA, Rawat K, 2022. Design of ultra-wideband power amplifier based on extended resistive continuous class B/J mode. IEEE Trans Circ Syst II Expr Briefs, 69(2):419-423. ![]() [9]Li C, You F, He SB, et al., 2019. High-efficiency power amplifier employing minimum-power harmonic active load modulator. IEEE Trans Circ Syst II Expr Briefs, 66(8):1371-1375. ![]() [10]Li M, Li ZQ, Zheng Q, et al., 2022. A 17–26.5 GHz 42.5 dBm broadband and highly efficient gallium nitride power amplifier design. Front Inform Technol Electron Eng, 23(2):346-350. ![]() [11]Liu X, Lv GS, Wang DH, et al., 2020. Energy-efficient power amplifiers and linearization techniques for massive MIMO transmitters: a review. Front Inform Technol Electron Eng, 21(1):72-96. ![]() [12]Nunes LC, Barros DR, Cabral PM, et al., 2018. Efficiency degradation analysis in wideband power amplifiers. IEEE Trans Microw Theory Techn, 66(12):5640-5651. ![]() [13]Sheikhi A, Hemesi H, 2022. Analysis and design of the novel class-F/E power amplifier with series output filter. IEEE Trans Circ Syst II Expr Briefs, 69(3):779-783. ![]() [14]Wing O, 2008. Classical Circuit Theory. Springer, New York, USA. ![]() [15]Zhu N, McLaren R, Holmes DG, et al., 2017. An integrated RF match and baseband termination supporting 395 MHz instantaneous bandwidth for high power amplifier applications. Proc IEEE MTT-S Int Microwave Symp, p.1114-1117. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>