CLC number: TN92
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-08-20
Cited: 0
Clicked: 2374
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-1090-5650
Xuehui WANG, Feng SHU, Riqing CHEN, Peng ZHANG, Qi ZHANG, Guiyang XIA, Weiping SHI, Jiangzhou WANG. Beamforming design for RIS-aided amplify-and-forward relay networks[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300118 @article{title="Beamforming design for RIS-aided amplify-and-forward relay networks", %0 Journal Article TY - JOUR
智能超表面辅助放大转发中继网络的波束成形设计1海南大学信息与通信工程学院,中国海口市,570228 2南京理工大学电子工程与光电技术学院,中国南京市,210094 3福建农林大学数字福建农业大数据研究院,中国福州市,350002 4安徽农业大学智慧农业研究院,中国合肥市,230036 5肯特大学工程学院,英国坎特伯雷市,CT2 7NT 摘要:使用可重构智能表面(RIS)增强速率性能涉及到RIS作为无源反射器的局限性。为解决这一问题,本文提出RIS辅助放大转发(AF)中继网络。为使信噪比最大化,提出两种方法联合优化AF中继的波束成形矩阵和RIS的相移矩阵。首先,为获得高速率,提出一种基于Charnes-Cooper变换和半定规划(CCT-SDP)的高性能交替优化(AO)方法。其中,将优化问题分解为3个子问题,并通过CCT-SDP和高斯随机化方法分别求解子问题和恢复秩一解。然而,CCT-SDP方法中优化矩阵变量会带来极高复杂度。为降低复杂度,提出一种基于Dinkelbachs变换和连续凸近似(DT-SCA)的低复杂度AO方法。其中,优化变量是向量,并通过DT-SCA方法求解3个解耦的子问题。仿真结果表明,与3个基准(即具有随机相位的RIS辅助的AF中继网络、没有RIS的AF中继网络和没有AF中继的RIS辅助的网络)相比,所提CCT-SDP和DT-SCA方法可以获得更好的速率性能。此外,低复杂度的DT-SCA方法与CCT-SDP方法速率接近。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abdullah Z, Chen GJ, Lambotharan S, et al., 2020. A hybrid relay and intelligent reflecting surface network and its ergodic performance analysis. IEEE Wirel Commun Lett, 9(10):1653-1657. ![]() [2]Abdullah Z, Kisseleff S, Ntontin K, et al., 2022. Double-RIS communication with DF relaying for coverage extension: is one relay enough? IEEE Int Conf on Communications, p.2639-2644. ![]() [3]An JC, Yuen C, Huang CW, et al., 2023a. A tutorial on holographic MIMO communications—part I: channel modeling and channel estimation. IEEE Commun Lett, 27(7):1664-1668. ![]() [4]An JC, Yuen C, Huang CW, et al., 2023b. A tutorial on holographic MIMO communications—part II: performance analysis and holographic beamforming. IEEE Commun Lett, 27(7):1669-1673. ![]() [5]Bie QY, Liu Y, Wang YX, et al., 2022. Deployment optimization of reconfigurable intelligent surface for relay systems. IEEE Trans Green Commun Netw, 6(1):221-233. ![]() [6]Björnson E, Özdogan Ö, Larsson EG, 2020. Intelligent reflecting surface versus decode-and-forward: how large surfaces are needed to beat relaying? IEEE Wirel Commun Lett, 9(2):244-248. ![]() [7]Charnes A, Cooper WW, 1962. Programming with linear fractional functionals. Nav Res Log Q, 9(3-4):181-186. ![]() [8]Chen Z, Tang J, Zhang XY, et al., 2022. Hybrid evolutionary-based sparse channel estimation for IRS-assisted mmWave MIMO systems. IEEE Trans Wirel Commun, 21(3):1586-1601. ![]() [9]Guan XR, Wu QQ, Zhang R, 2020. Joint power control and passive beamforming in IRS-assisted spectrum sharing. IEEE Commun Lett, 24(7):1553-1557. ![]() [10]Guan XR, Wu QQ, Zhang R, 2022. Anchor-assisted channel estimation for intelligent reflecting surface aided multiuser communication. IEEE Trans Wirel Commun, 21(6):3764-3778. ![]() [11]Guo HY, Liang YC, Chen J, et al., 2020. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless netwroks. IEEE Trans Wirel Commun, 19(5):3064-3076. ![]() [12]Hong S, Pan CH, Ren H, et al., 2021. Robust transmission design for intelligent reflecting surface-aided secure communication systems with imperfect cascaded CSI. IEEE Trans Wirel Commun, 20(4):2487-2501. ![]() [13]Jiang W, Schotten HD, 2022. Intelligent reflecting vehicle surface: a novel IRS paradigm for moving vehicular networks. IEEE Military Communications Conf, p.793-798. ![]() [14]Jiang WH, Chen BL, Zhao J, et al., 2021. Joint active and passive beamforming design for the IRS-assisted MIMOME-OFDM secure communications. IEEE Trans Veh Technol, 70(10):10369-10381. ![]() [15]Khalid W, Shahjalal M, Yu H, 2022. Outage performance analysis of hybrid relay-reconfigurable intelligent surface networks. Proc 27th Asia Pacific Conf on Communications, p.253-254. ![]() [16]Lee J, Shin W, Lee J, 2021. Performance analysis of IRS-assisted LEO satellite communication systems. Int Conf on Information and Communication Technology Convergence, p.323-325. ![]() [17]Li GH, Yue DW, Jin SN, et al., 2022. Hybrid double-RIS and DF-relay for outdoor-to-indoor communication. IEEE Access, 10:126651-126663. ![]() [18]Obeed M, Chaaban A, 2022. Joint beamforming design for multi-user MISO downlink aided by a reconfigurable intelligent surface and a relay. IEEE Trans Wirel Commun, 21(10):8216-8229. ![]() [19]Shen KM, Yu W, 2018. Fractional programming for communication systems—part II: uplink scheduling via matching. IEEE Trans Signal Process, 66(10):2631-2644. ![]() [20]Shi WP, Zhou XB, Jia LQ, et al., 2021a. Enhanced secure wireless information and power transfer via intelligent reflecting surface. IEEE Commun Lett, 25(4):1084-1088. ![]() [21]Shi WP, Li JY, Xia GY, et al., 2021b. Secure multigroup multicast communication systems via intelligent reflecting surface. China Commun, 18(3):39-51. ![]() [22]Shu F, Lu Y, Chen YZ, et al., 2014. High-sum-rate beamformers for multi-pair two-way relay networks with amplify-and-forward relaying strategy. Sci China Inform Sci, 57(2):1-11. ![]() [23]Shu F, Teng Y, Li JY, et al., 2021a. Enhanced secrecy rate maximization for directional modulation networks via IRS. IEEE Trans Commun, 69(12):8388-8401. ![]() [24]Shu F, Jiang XY, Liu XY, et al., 2021b. Precoding and transmit antenna subarray selection for secure hybrid spatial modulation. IEEE Trans Wirel Commun, 20(3):1903-1917. ![]() [25]Shu F, Yang LL, Jiang XY, et al., 2022. Beamforming and transmit power design for intelligent reconfigurable surface-aided secure spatial modulation. IEEE J Sel Top Signal Process, 16(5):933-949. ![]() [26]Sun ZW, Wang XH, Feng SL, et al., 2023. Pilot optimization and channel estimation for two-way relaying network aided by IRS with finite discrete phase shifters. IEEE Trans Veh Technol, 72(4):5502-5507. ![]() [27]Tian Z, Chen ZC, Wang M, et al., 2022. Reconfigurable intelligent surface empowered optimization for spectrum sharing: scenarios and methods. IEEE Veh Technol Mag, 17(2):74-82. ![]() [28]Wang MX, Duan W, Zhang GA, et al., 2022. On the achievable capacity of cooperative NOMA networks: RIS or relay? IEEE Wirel Commun Lett, 11(8):1624-1628. ![]() [29]Wang XH, Shu F, Shi WP, et al., 2022. Beamforming design for IRS-aided decode-and-forward relay wireless network. IEEE Trans Green Commun Netw, 6(1):198-207. ![]() [30]Wang XH, Zhang P, Shu F, et al., 2023. Power allocation for IRS-aided two-way decode-and-forward relay wireless network. IEEE Trans Veh Technol, 72(1):1337-1342. ![]() [31]Wei L, Huang CW, Alexandropoulos GC, et al., 2021. Channel estimation for RIS-empowered multi-user MISO wireless communications. IEEE Trans Commun, 69(6):4144-4157. ![]() [32]Wu QQ, Zhang R, 2019. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans Wirel Commun, 18(11):5394-5409. ![]() [33]Yang SJ, Lyu W, Xiu Y, et al., 2023. Active 3D double-RIS-aided multi-user communications: two-timescale-based separate channel estimation via Bayesian learning. IEEE Trans Commun, 71(6):3605-3620. ![]() [34]Yildirim I, Kilinc F, Basar E, et al., 2021. Hybrid RIS-empowered reflection and decode-and-forward relaying for coverage extension. IEEE Commun Lett, 25(5):1692-1696. ![]() [35]Zheng BX, Lin SE, Zhang R, 2022. Intelligent reflecting surface-aided LEO satellite communication: cooperative passive beamforming and distributed channel estimation. IEEE J Sel Areas Commun, 40(10):3057-3070. ![]() [36]Zhou X, Li J, Shu F, et al., 2019. Secure SWIPT for directional modulation-aided AF relaying networks. IEEE J Sel Areas Commun, 37(2):253-268. ![]() [37]Zhou XB, Yan SH, Wu QQ, et al., 2022. Intelligent reflecting surface (IRS)-aided covert wireless communications with delay constraint. IEEE Trans Wirel Commun, 21(1):532-547. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>