CLC number: TP301
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-08-06
Cited: 0
Clicked: 2237
Zhiyu DUAN, Shunkun YANG, Qi SHAO, Minghao YANG. PEGA: probabilistic environmental gradient-driven genetic algorithm considering epigenetic traits to balance global and local optimizations[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300170 @article{title="PEGA: probabilistic environmental gradient-driven genetic algorithm considering epigenetic traits to balance global and local optimizations", %0 Journal Article TY - JOUR
PEGA:一种考虑表观遗传特征平衡全局和局部优化的概率环境梯度驱动遗传算法北京航空航天大学可靠性与系统工程学院,中国北京市,100191 摘要:表观遗传学的灵活性使进化机制更加精细和多样化。从表观遗传的角度来看,提升遗传算法的稳定性和准确性需要重点解决两个方面的问题:(1)恒定外部环境导致突变或交叉后表型变化的过度无序性;(2)表观遗传算子类型有限导致的过早收敛。为此本文提出一种考虑表观遗传特征的概率环境梯度驱动遗传算法(PEGA)。提出概率环境梯度下降策略(PEG),其基于多维异构指数环境向量在解空间中沿梯度方向生成更多后代,以提高局部收敛效率并获得稳定的局部搜索能力。为了在不同进化阶段平衡全局和局部搜索,设计了可变核小体重组算子(VNR)以动态调整参与突变和交叉的基因数量。在此基础上,引入3个表观遗传算子,通过丰富遗传多样性来减少过早收敛的可能。在CEC’17基准函数集上10维,30维,50维和100维的实验结果表明,PEGA的准确性和稳定性均优于10种先进的进化和群体智能算法。消融分析验证了PEG和VNR在96.55%的测试函数上的有效性,并可将准确性提高至多4个数量级。此外,PEGA在航天器轨迹优化问题上也表现出了最佳综合性能。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abualigah L, Shehab M, Alshinwan M, et al., 2021. Ant Lion Optimizer: a comprehensive survey of its variants and applications. Arch Comput Methods Eng, 28(3):1397-1416. ![]() [2]Baş E, Ülker E, 2020. A binary social spider algorithm for continuous optimization task. Soft Comput, 24(17):12953-12979. ![]() [3]Birogul S, 2016. Epigenetic algorithm for optimization: application to mobile network frequency planning. Arab J Sci Eng, 41(3):883-896. ![]() [4]Chen HC, Martinez JP, Zorita E, et al., 2017. Position effects influence HIV latency reversal. Nat Struct Mol Biol, 24(1):47-54. ![]() [5]Chen HX, Fan DL, Fang L, et al., 2020. Particle swarm optimization algorithm with mutation operator for particle filter noise reduction in mechanical fault diagnosis. Int J Patt Recog Artif Intell, 34(10):2058012. ![]() [6]Chromiński K, Boryczka M, 2016. Epigenetically inspired modification of genetic algorithm and his efficiency on biological sequence alignment. In: Czarnowski I, Caballero A, Howlett R, et al. (Eds.), Intelligent Decision Technologies 2016. Springer, Cham, p.95-105. ![]() [7]Coli GM, Boattini E, Filion L, et al., 2022. Inverse design of soft materials via a deep learning-based evolutionary strategy. Sci Adv, 8(3):eabj6731. ![]() [8]Das S, Suganthan PN, 2010. Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems. Technical Report, Jadavpur University, India, and Nanyang Technological University, Singapore, p.341-359. ![]() [9]Ezzarii M, El Ghazi H, El Ghazi H, et al., 2020. Epigenetic algorithm-based detection technique for network attacks. IEEE Access, 8:199482-199491. ![]() [10]Feng YH, Yi JH, Wang GG, 2019. Enhanced moth search algorithm for the set-union knapsack problems. IEEE Access, 7:173774-173785. ![]() [11]Gouil Q, Baulcombe DC, 2018. Paramutation-like features of multiple natural epialleles in tomato. BMC Genomics, 19(1):203. ![]() [12]Katoch S, Chauhan SS, Kumar V, 2021. A review on genetic algorithm: past, present, and future. Multim Tools Appl, 80(5):8091-8126. ![]() [13]Khalid QS, Azim S, Abas M, et al., 2021. Modified particle swarm algorithm for scheduling agricultural products. Eng Sci Technol Int J, 24(3):818-828. ![]() [14]Li Y, Lin XX, Liu JS, 2021. An improved gray wolf optimization algorithm to solve engineering problems. Sustainability, 13(6):3208. ![]() [15]Lin J, Zhu L, Gao KZ, 2020. A genetic programming hyper-heuristic approach for the multi-skill resource constrained project scheduling problem. Expert Syst Appl, 140:112915. ![]() [16]Makino H, Feng XA, Kita E, 2020. Stochastic schemata exploiter-based optimization of convolutional neural network. IEEE Int Conf on Systems, Man, and Cybernetics, p.4365-4371. ![]() [17]Mayanagi K, Saikusa K, Miyazaki N, et al., 2019. Structural visualization of key steps in nucleosome reorganization by human fact. Sci Rep, 9(1):10183. ![]() [18]Miikkulainen R, Forrest S, 2021. A biological perspective on evolutionary computation. Nat Mach Intell, 3(1):9-15. ![]() [19]Mirjalili S, Dong JS, Sadiq AS, et al., 2020. Genetic Algorithm: Theory, Literature Review, and Application in Image Reconstruction. In: Mirjalili S, Dong JS, Lewis A, (Eds.), Nature-Inspired Optimizers. Studies in Computational Intelligence. Springer, Cham, p.69-85. ![]() [20]Mohamed AW, Hadi AA, Mohamed AK, 2020. Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm. Int J Mach Learn Cybern, 11(7):1501-1529. ![]() [21]Monroe JG, Srikant T, Carbonell-Bejerano P, et al., 2022. Mutation bias reflects natural selection in Arabidopsis thaliana. Nature, 602(7895):101-105. ![]() [22]Nguyen TT, 2019. A high performance social spider optimization algorithm for optimal power flow solution with single objective optimization. Energy, 171:218-240. ![]() [23]Owens NDL, Gonzalez I, Artus J, et al., 2020. Mitotic bookmarking by transcription factors and the preservation of pluripotency. In: Meshorer E, Testa G (Eds.), Stem Cell Epigenetics. Academic Press, Amsterdam, the Netherlands, p.131-153. ![]() [24]Pereira AGC, Campos VSM, de Pinho ALS, et al., 2020. On the convergence rate of the elitist genetic algorithm based on mutation probability. Commun Stat-Theory Methods, 49(4):769-780. ![]() [25]Periyasamy S, Gray A, Kille P, 2008. The epigenetic algorithm. IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), p.3228-3236. ![]() [26]Slowik A, Kwasnicka H, 2020. Evolutionary algorithms and their applications to engineering problems. Neur Comput Appl, 32:12363-12379. ![]() [27]Song YJ, Cai X, Zhou XB, et al., 2023. Dynamic hybrid mechanism-based differential evolution algorithm and its application. Expert Syst Appl, 213:118834. ![]() [28]Stolfi DH, Alba E, 2018. Epigenetic algorithms: a new way of building gas based on epigenetics. Inform Sci, 424:250-272. ![]() [29]Sun P, Liu H, Zhang Y, et al., 2021. An intensify atom search optimization for engineering design problems. Appl Math Model, 89:837-859. ![]() [30]Tanev I, Yuta K, 2003. Epigenetic programming: an approach of embedding epigenetic learning via modification of histones in genetic programming. The 2003 Congress on Evolutionary Computation, p.2580-2587. ![]() [31]Thamban T, Agarwaal V, Khosla S, 2020. Role of genomic imprinting in mammalian development. J Biosci, 45(1):20. ![]() [32]Więckowski J, Kizielewicz B, Kołodziejczyk J, 2020. Finding an approximate global optimum of characteristic objects preferences by using simulated annealing. Proc 12th KES Int Conf on Intelligent Decision Technologies, p.365-375. ![]() [33]Yue CT, Price KV, Suganthan PN, et al., 2017. Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization. Technical Report, No. 201911 (2016). ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>