Full Text:  <739>

Suppl. Mater.: 

Summary:  <32>

CLC number: TP273

On-line Access: 2025-04-03

Received: 2023-11-22

Revision Accepted: 2024-04-16

Crosschecked: 2025-04-07

Cited: 0

Clicked: 1050

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Mai TANG

https://orcid.org/0009-0000-4414-2412

Yao MAO

https://orcid.org/0000-0003-1785-2018

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


An error-based observer improved by the repetitive control strategy for electro-optical tracking systems


Author(s):  Mai TANG, Wenqiang XIA, Jiuqiang DENG, Yao MAO

Affiliation(s):  National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China; more

Corresponding email(s):  tangmai22@mails.ucas.ac.cn, xiawenqiang20@mails.ucas.ac.cn, jqdeng@ioe.ac.cn, maoyao@ioe.ac.cn

Key Words:  Disturbance suppression; Error-based observer; Repetitive control; Electro-optical tracking system; Specific frequency point


Share this article to: More <<< Previous Paper|Next Paper >>>

Mai TANG, Wenqiang XIA, Jiuqiang DENG, Yao MAO. An error-based observer improved by the repetitive control strategy for electro-optical tracking systems[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300796

@article{title="An error-based observer improved by the repetitive control strategy for electro-optical tracking systems",
author="Mai TANG, Wenqiang XIA, Jiuqiang DENG, Yao MAO",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.2300796"
}

%0 Journal Article
%T An error-based observer improved by the repetitive control strategy for electro-optical tracking systems
%A Mai TANG
%A Wenqiang XIA
%A Jiuqiang DENG
%A Yao MAO
%J Frontiers of Information Technology & Electronic Engineering
%P 441-455
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.2300796"

TY - JOUR
T1 - An error-based observer improved by the repetitive control strategy for electro-optical tracking systems
A1 - Mai TANG
A1 - Wenqiang XIA
A1 - Jiuqiang DENG
A1 - Yao MAO
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 441
EP - 455
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.2300796"


Abstract: 
Electro-optical tracking systems have been widely used in the cutting-edge domains of free space environment detection and communication owing to their exceptional performance. However, external disturbances often significantly impact the working accuracy of these systems. As their scope of application continues to broaden, increasingly complex operating conditions introduce more intricate environments and disturbances. This paper introduces a composite control structure of an enhanced error-based observer, rooted in the repetitive control strategy, tailored for two types of complex disturbances: periodic harmonic disturbance and narrow-band peak periodic disturbance. This structure not only ensures the system’s stability, but also suppresses periodic disturbances across multiple frequencies, effectively addressing the challenge that current disturbance suppression methods face in mitigating complex periodic disturbances. Moreover, necessary proofs are provided and an experimental platform is established for the electro-optical system, demonstrating the efficacy and reliability of the proposed control methods under various conditions.

光电跟踪系统中基于重复控制策略改进的误差观测器

唐迈1,2,3,4,夏文强1,2,3,4,邓久强1,2,3,4,毛耀1,2,3,4
1中国科学院光场调控科学技术全国重点实验室,中国成都市,610209
2中国科学院光学工程重点实验室,中国成都市,610209
3中国科学院光电技术研究所,中国成都市,610209
4中国科学院大学,中国北京市,101408
摘要:光电跟踪系统因其出色的工作性能,已被广泛应用于自由空间环境探测及通信等前沿领域。外界扰动往往会很大程度影响光电跟踪系统的工作精度,随着其应用领域不断拓宽,更复杂的工作条件也带来更复杂的工作环境和扰动情况。本文针对周期性谐波扰动和窄带尖峰周期性扰动两类复杂的扰动情况,提出一种基于重复控制策略改进的误差扰动观测器复合控制结构。这种结构在保证系统稳定性的同时,实现了多重频率处的周期性扰动抑制,弥补了现有扰动抑制方法难以对复杂周期性扰动进行抑制的问题。此外,给出相关证明,并搭建光电系统实验平台,验证了上述控制方法在不同情况下的有效性和可靠性。

关键词组:扰动抑制;误差观测器;重复控制;光电跟踪系统;特殊频率点

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Astolfi D, Marx S, van de Wouw N, 2021. Repetitive control design based on forwarding for nonlinear minimum-phase systems. Automatica, 129:109671.

[2]Beaulieu-Laroche L, Brown NJ, Hansen M, et al., 2021. Allometric rules for Mammalian cortical layer 5 neuron biophysics. Nature, 600(7888):274-278.

[3]Berkefeld T, Soltau D, Schmidt D, et al., 2010. Adaptive optics development at the German solar telescopes. Appl Opt, 49(31):G155-G166.

[4]Caruso H, 2001. MIL-STD-810F, test method standard for environmental engineering considerations and laboratory tests. J IEST, 44(3):30-34.

[5]Chen X, Tomizuka M, 2013. New repetitive control with improved steady-state performance and accelerated transient. IEEE Trans Contr Syst Technol, 22(2):664-675.

[6]Deng JQ, Zhou X, Mao Y, 2021. On vibration rejection of nonminimum-phase long-distance laser pointing system with compensatory disturbance observer. Mechatronics, 74:102490.

[7]Deng JQ, Xue WC, Zhou X, et al., 2022. On dual compensation to disturbances and uncertainties for inertially stabilized platforms. Int J Contr Automat Syst, 20(5):1521-1534.

[8]Deng JQ, Xue WC, Liang W, et al., 2023. On adjustable and lossless suppression to disturbances and uncertainties for nonminimum-phase laser pointing system. ISA Trans, 136:727-741.

[9]Dong QR, Liu YK, Zhang YL, et al., 2018. Improved ADRC with ILC control of a CCD-based tracking loop for fast steering mirror system. IEEE Photon J, 10(4):1-14.

[10]Downey G, Stockum L, 1989. Electro-optical tracking systems considerations. Proc SPIE 1111, Acquisition, Tracking, and Pointing III, p.70-84.

[11]Fedele G, Ferrise A, 2014. Periodic disturbance rejection with unknown frequency and unknown plant structure. J Franklin Inst, 351(2):1074-1092.

[12]Hara S, Yamamoto Y, Omata T, et al., 1988. Repetitive control system: a new type servo system for periodic exogenous signals. IEEE Trans Automat Contr, 33(7):659-668.

[13]Inoue T, Nakano M, Kubo T, et al., 1981. High accuracy control of a proton synchrotron magnet power supply. IFAC Proc Vol, 14(2):3137-3142.

[14]Kalita A, Mrozek-McCourt M, et al., 2023. Microstructure and crystal order during freezing of supercooled water drops. Nature, 620(7974):557-561.

[15]Kennedy PJ, Kennedy RL, 2003. Direct versus indirect line of sight (LOS) stabilization. IEEE Trans Contr Syst Technol, 11(1):3-15.

[16]Lan YH, He JL, Li P, et al., 2020. Optimal preview repetitive control with application to permanent magnet synchronous motor drive system. J Franklin Inst, 357(15):10194-10210.

[17]Lee HS, Tomizuka M, 1996. Robust motion controller design for high-accuracy positioning systems. IEEE Trans Ind Electron, 43(1):48-55.

[18]Lee JS, Lim SY, Kim I, et al., 2016. An adaptive disturbance rejection method with stability enhancement using adjustable dead zone for hard disk drives. IEEE Trans Magn, 53(3):1-9.

[19]Li ZJ, Mao Y, Qi B, et al., 2022. Research on control technology of single detection based on position correction in quantum optical communication. Opto-Electron Eng, 49(3):210311 (in Chinese).

[20]Longman RW, 2000. Iterative learning control and repetitive control for engineering practice. Int J Contr, 73(10):930-954.

[21]Lu LL, Wang XQ, Jin LH, et al., 2024. Current optimization-based control of dual three-phase PMSM for low-frequency temperature swing reduction. Def Technol, 34:238-246.

[22]Madsen LS, Laudenbach F, Askarani MF, et al., 2022. Quantum computational advantage with a programmable photonic processor. Nature, 606(7912):75-81.

[23]Nie K, Li ZJ, Guo T, et al., 2021. Improved repetitive control with model-assisted extended state observer for optoelectronic tracking system. Proc IEEE 10th Data Driven Control and Learning Systems Conf, p.360-366.

[24]Niu SX, Yang T, Tang T, et al., 2019. Wideband vibrations rejection of tip-tilt mirror using error-based disturbance observer. IEEE Access, 8:5131-5138.

[25]Ohishi K, Nakao M, Ohnishi K, et al., 1987. Microprocessor-controlled DC motor for load-insensitive position servo system. IEEE Trans Ind Electron, IE-34(1):44-49.

[26]Ren W, Luo Y, He QN, et al., 2018. Stabilization control of electro-optical tracking system with fiber-optic gyroscope based on modified Smith predictor control scheme. IEEE Sens J, 18(19):8172-8178.

[27]Ricks TP, Burton MM, Cruger W, et al., 2004. Stabilized electro-optical airborne instrumentation platform (SEAIP). Proc SPIE 5268, Chemical and Biological Standoff Detection, p.202-209.

[28]Shamsuzzoha M, Lee M, 2009. Enhanced disturbance rejection for open-loop unstable process with time delay. ISA Trans, 48(2):237-244.

[29]Shen XN, Liu JX, Alcaide AM, et al., 2022. Adaptive second-order sliding mode control for grid-connected NPC converters with enhanced disturbance rejection. IEEE Trans Power Electron, 37(1):206-220.

[30]Snigirev V, Riedhauser A, Lihachev G, et al., 2023. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature, 615(7952):411-417.

[31]Sobhy A, Lei D, 2021. Model-assisted active disturbance rejection controller for maximum efficiency schemes of DFIG-based wind turbines. Int Trans Electr Energy Syst, 31(11):e13107.

[32]Somaschini R, Bianchi G, Scaccabarozzi D, et al., 2019. Characterization of commercial fast steering mirrors for space application. Proc IEEE 5th Int Workshop on Metrology for AeroSpace, p.468-472.

[33]Tang T, Niu SX, Yang T, et al., 2019. Vibration rejection of tip-tilt mirror using improved repetitive control. Mech Syst Signal Process, 116:432-442.

[34]Tian MH, Wang B, Yu Y, et al., 2021. Discrete-time repetitive control-based ADRC for current loop disturbances suppression of PMSM drives. IEEE Trans Ind Inform, 18(5):3138-3149.

[35]Wang YC, Zheng LF, Zhang HG, et al., 2020. Fuzzy observer-based repetitive tracking control for nonlinear systems. IEEE Trans Fuzzy Syst, 28(10):2401-2415.

[36]Ye J, Liu LG, Xu JB, et al., 2021. Frequency adaptive proportional-repetitive control for grid-connected inverters. IEEE Trans Ind Electron, 68(9):7965-7974.

[37]Zhang H, Sun Y, 2003. Bode integrals and laws of variety in linear control systems. Proc American Control Conf, p.66-70.

[38]Zhao T, Tong W, Mao Y, 2023. Hybrid nonsingleton fuzzy strong tracking Kalman filtering for high precision photoelectric tracking system. IEEE Trans Ind Inform, 19(3):2395-2408.

[39]Zheng YS, Cao ZW, Man ZH, et al., 2021. Phase-lead repetitive control of a PMSM with field-oriented feedback linearization and a disturbance observer. Proc 47th Annual Conf of the IEEE Industrial Electronics Society, p.1-4.

[40]Zhou L, She JH, Zhang XM, et al., 2020. Improving disturbance-rejection performance in a modified repetitive-control system based on equivalent-input-disturbance approach. Int J Syst Sci, 51(1):49-60.

[41]Zhou X, Mao Y, Zhang H, et al., 2022. Resonance compensation research of tip-tilt mirror’s 2-DOF tracking-disturbance rejection problem. Sens Actuat A Phys, 346:113837.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE