CLC number: TP316.2
On-line Access: 2025-05-06
Received: 2024-02-12
Revision Accepted: 2024-08-05
Crosschecked: 2025-05-06
Cited: 0
Clicked: 655
Alireza ZIRAK. XIRAC: an optimized product-oriented near-real-time operating system with unlimited tasks and an innovative programming paradigm based on the maximum entropy method[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400102 @article{title="XIRAC: an optimized product-oriented near-real-time operating system with unlimited tasks and an innovative programming paradigm based on the maximum entropy method", %0 Journal Article TY - JOUR
XIRAC:一种优化的具有无限制任务及创新编程范式的基于最大熵且面向产品的近实时操作系统核科学与技术研究院光子学与量子技术研究所,伊朗德黑兰,111553486 摘要:在受限硬件环境下,包括物联网在内的面向产品的操作系统面临着难以同时高效管理海量实时任务并执行资源密集型应用的重大挑战。为弥补该类嵌入式操作系统与通用操作系统的性能鸿沟,在信息论指导下,本文构建了一种优化的实时操作系统XIRAC。XIRAC利用香农信息论来调节处理器的工作负载,最大限度减少上下文切换,并通过最大化系统熵容限实现进程抢占。与以往仅将信息论用于任务优先级匹配的方法不同,XIRAC将最大熵集成到实时操作系统(RTOS)与调度算法的内核中。随后,将若干常见的无限制任务从应用层迁移至系统内核,以优化海量的系统参数。描述了这种架构转变的优势,包括优化的系统性能、可扩展性和适应性。从这种集成中衍生出一种新兴编程范式,称为"对象模拟编程"。XIRAC在多种产品中的实际应用展示了更多优势,包括缩短学习曲线、消除对库函数和线程的依赖、优化芯片潜能、提高产品开发的竞争力。本文对上述优势进行了全面总结,并通过实际案例与应用探讨了其影响。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abohamama AS, El-Ghamry A, Hamouda E, 2022. Real-time task scheduling algorithm for IoT-based applications in the cloud–fog environment. J Netw Syst Manag, 30(4):54. ![]() [2]Avan A, Azim A, Mahmoud QH, 2023. A state-of-the-art review of task scheduling for edge computing: a delay-sensitive application perspective. Electronics, 12(12):2599. ![]() [3]Fampa M, Lee J, 2024. An outer-approximation algorithm for maximum-entropy sampling. Discrete Appl Math, 347:271-284. ![]() [4]Fang JH, Zhang R, Zhou AY, 2020. Load balance for distributed real-time computing systems. In: Zheng WA, Wang SP, Fang JH, et al. (Eds.), East China Normal University Scientific Reports. World Scientific, Singapore, p.83-107. ![]() [5]Gaikwad JS, 2024. Multi-core system classification algorithms for scheduling in real-time systems. In: Kaiser MS, Xie JY, Rathore VS (Eds.), ICT: Smart Systems and Technologies. Springer, Singapore, p.229-237. ![]() [6]He S, Li SZ, Chen Y, et al., 2015. Uncertainty analysis of race conditions in real-time systems. Proc IEEE Int Conf on Software Quality, Reliability and Security, p.227-232. ![]() [7]Inc. ICP DAS USA, 2024. Zigbee Wireless Modbus RTU Data Acquisition. https://www.icpdas-usa.com/zigbee_alliance_wireless_data_acquisition [Accessed on Feb. 10, 2024]. ![]() [8]Khezerloo D, Nedaie HA, Farhood B, et al., 2017. Optical computed tomography in PRESAGE® three-dimensional dosimetry: challenges and prospective. J Cancer Res Ther, 13(3):419-424. ![]() [9]Khosravi Tanak A, Najafi M, Mohtashami Borzadaran GR, 2024. A new lifetime distribution by maximizing entropy: properties and applications. Prob Eng Inform Sci, 38(1):189-206. ![]() [10]Kiyani A, Abdollahzadeh M, Sadat Kiai SM, et al., 2011. Designing of a quadrupole Paul ion trap. J Fusion Energy, 30(4):291-293. ![]() [11]Kondaveeti HK, Kumaravelu NK, Vanambathina SD, et al., 2021. A systematic literature review on prototyping with Arduino: applications, challenges, advantages, and limitations. Comput Sci Rev, 40:100364. ![]() [12]Li SZ, Zhang YZ, Luo HY, et al., 2018. Race-condition-aware and hardware-oriented task partitioning and scheduling using entropy maximization. IEEE Trans Parall Distrib Syst, 29(7):1589-1604. ![]() [13]Lisitsin DV, Gavrilov KV, 2024. The use of maximum entropy principle to construct robust estimators under point Bayesian contamination. Part I. Appl Math Contr Sci, (1):55-72 (in Russian). ![]() [14]Microchip Technology, 2023. Microchip Studio for AVR® and SAM Devices. https://www.microchip.com/en-us/tools-resources/develop/microchip-studio [Accessed on Feb. 5, 2024]. ![]() [15]Min-Allah N, Khan SU, Wang YJ, 2012. Optimal task execution times for periodic tasks using nonlinear constrained optimization. J Supercomput, 59(3):1120-1138. ![]() [16]Najmi AH, Moon T, 2020. Advanced Signal Processing: a Concise Guide. McGraw-Hill, New York, USA. ![]() [17]Rincón CAC, Cheng AMK, 2017. Using information theory principles to schedule real-time tasks. Proc 51st Annual Conf on Information Sciences and Systems, p.1-6. ![]() [18]Rincón CAC, Cheng AMK, 2018. SITSA-RT: an information theory inspired real-time multiprocessor scheduler. Proc IEEE 21st Int Symp on Real-Time Distributed Computing, p.156-163. ![]() [19]Schäffler S, 2024. Mathematics of Information: Theory and Applications of Shannon–Wiener Information. Springer, Berlin, Germany. ![]() [20]Scharfenaker E, Yang J, 2020. Maximum entropy economics. Eur Phys J Spec Top, 229(9):1577-1590. ![]() [21]Shannon CE, 1948. A mathematical theory of communication. Bell Syst Tech J, 27(3):379-423. ![]() [22]Sharma R, Nitin, 2013. Visualization of information theoretic maximum entropy model in real time distributed system. Proc 3rd Int Conf on Advances in Computing and Communications, p.282-286. ![]() [23]Ünsalan C, Gürhan HD, Yücel ME, 2022. Embedded System Design with ARM Cortex-M Microcontrollers: Applications with C, C++ and MicroPython. Springer, Cham, Switzerland. ![]() [24]Wang KC, 2017. Embedded and Real-Time Operating Systems. Springer, Cham, Switzerland. ![]() [25]Zirak A, 2023. XIRAC-Q: a near-real-time quantum operating system scheduling structure based on Shannon information theorem. Quantum Inform Process, 22(11):403. ![]() [26]Zirak A, Roshani S, 2016. A reduced switch voltage stress class E power amplifier using harmonic control network. Int J Adv Comput Sci Appl, 7(5):38-42. ![]() [27]Zirak A, Beygi P, Mirzakhah S, 2017. Dynamic estimation of the modeling error statistics in diffuse optical tomography. Inverse Probl Sci Eng, 25(4):492-505. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>