CLC number: TP391
On-line Access: 2025-06-04
Received: 2024-04-30
Revision Accepted: 2024-09-18
Crosschecked: 2025-06-04
Cited: 0
Clicked: 829
Zhiwei ZHU, Xiang GAO, Lu YU, Yiyi LIAO. Neural mesh refinement[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400344 @article{title="Neural mesh refinement", %0 Journal Article TY - JOUR
神经网格细化1浙江大学信息与电子工程学院,中国杭州市,310027 2浙江省信息处理与通信网络重点实验室,中国杭州市,310027 摘要:细分是一种广泛使用的网格细化技术。经典方法依赖于固定的手工定义的加权规则,难以生成具有适当细节的更精细网格,而先进的神经细分方法虽然实现了数据驱动的非线性细分,但缺乏鲁棒性,细分级别有限,而且在新形状上会出现伪像。为解决这些问题,提出一种神经网格细化(NMR)方法,该方法从精细形状中学习几何先验,再通过细分自适应地细化粗糙网格,并展示了鲁棒的可泛化性。我们的关键见解是,有必要将网络从非结构信息(如尺度、旋转和平移)中解耦出来,使其能够专注于学习和应用局部补丁的结构先验来进行自适应细化。为此,引入内在结构描述符和局部自适应神经滤波器。内在结构描述符排除非结构信息以对齐局部补丁,从而稳定了输入特征空间,使网络能够鲁棒地提取结构先验。神经滤波器采用图注意机制,提取局部结构特征,并将学习到的先验知识应用于局部补丁。此外,我们观察到,与L2损失相比,Charbonnier损失可以减轻过度平滑。结合这些设计选择,所提方法获得了鲁棒的几何学习和局部自适应能力,增强了对未知形状和任意细化级别的泛化能力。在一组复杂的三维形状上评估了该方法,结果表明它在几何质量方面优于现有细分方法。项目页面见https://zhuzhiwei99.github.io/NeuralMeshRefinement. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abutbul A, Elidan G, Katzir L, et al., 2020. DNF-Net: a neural architecture for tabular data. ![]() [2]Atwood J, Towsley D, 2016. Diffusion-convolutional neural networks. Proc 30th Int Conf on Neural Information Processing Systems, p.2001-2009. ![]() [3]Beatty JC, Dyn N, Levine D, et al., 1990. A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans Graph, 9(2):160-169. ![]() [4]Bronstein AM, Bronstein MM, Kimmel R, 2009. Numerical Geometry of Non-rigid Shapes. Springer, New York, USA. ![]() [5]Catmull E, Clark J, 1998. Recursively generated B-spline surfaces on arbitrary topological meshes. Proc Seminal Graphics: Pioneering Efforts That Shaped the Field, p.183-188. ![]() [6]Charbonnier P, Blanc-Féraud L, Aubert G, et al., 1994. Two deterministic half-quadratic regularization algorithms for computed imaging. Proc 1st Int Conf on Image Processing, p.168-172. ![]() [7]Chen HG, He XH, Qing LB, et al., 2022. Real-world single image super-resolution: a brief review. Inform Fus, 79:124-145. ![]() [8]Chen Y, Zhao JY, Shi CW, et al., 2020. Mesh convolution: a novel feature extraction method for 3D nonrigid object classification. IEEE Trans Multim, 23:3098-3111. ![]() [9]Chen YC, Kim V, Aigerman N, et al., 2023. Neural progressive meshes. Proc ACM SIGGRAPH, Article 84. ![]() [10]Choi Y, Jeong JB, Lee S, et al., 2022. Overview of the video-based dynamic mesh coding (V-DMC) standard work. Proc 13th Int Conf on Information and Communication Technology Convergence, p.578-581. ![]() [11]Dai A, Nießner M, 2019. Scan2Mesh: from unstructured range scans to 3D meshes. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.5569-5578. ![]() [12]Dai T, Cai JR, Zhang YB, et al., 2019. Second-order attention network for single image super-resolution. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.11057-11066. ![]() [13]DeRose T, Kass M, Truong T, 1998. Subdivision surfaces in character animation. Proc 25th Annual Conf on Computer Graphics and Interactive Techniques, p.85-94. ![]() [14]Dong C, Loy CC, Tang XO, 2016a. Accelerating the super-resolution convolutional neural network. Proc 14th European Conf on Computer Vision, p.391-407. ![]() [15]Dong C, Loy CC, He KM, et al., 2016b. Image super-resolution using deep convolutional networks. IEEE Trans Patt Anal Mach Intell, 38(2):295-307. ![]() [16]Doo D, Sabin M, 1998. Behaviour of recursive division surfaces near extraordinary points. Proc Seminal Graphics: Pioneering Efforts That Shaped the Field, p.177-181. ![]() [17]Dyn N, 2006. Three families of nonlinear subdivision schemes. Stud Comput Math, 12:23-38. ![]() [18]Feng YT, Feng YF, You HX, et al., 2019. MeshNet: mesh neural network for 3D shape representation. Proc 33rd AAAI Conf on Artificial Intelligence, p.8279-8286. ![]() [19]Garland M, Heckbert PS, 1997. Surface simplification using quadric error metrics. Proc 24th Annual Conf on Computer Graphics and Interactive Techniques, p.209-216. ![]() [20]Haim N, Segol N, Ben-Hamu H, et al., 2019. Surface networks via general covers. Proc IEEE/CVF Int Conf on Computer Vision, p.632-641. ![]() [21]Han B, Zhang XY, Ren S, 2022. PU-GACNet: graph attention convolution network for point cloud upsampling. Image Vis Comput, 118:104371. ![]() [22]Hanocka R, Hertz A, Fish N, et al., 2019. MeshCNN: a network with an edge. ACM Trans Graph, 38(4):90. ![]() [23]Haris M, Shakhnarovich G, Ukita N, 2018. Deep back-projection networks for super-resolution. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.1664-1673. ![]() [24]Hertz A, Hanocka R, Giryes R, et al., 2020. Deep geometric texture synthesis. ACM Trans Graph, 39(4):108. ![]() [25]Hoppe H, DeRose T, Duchamp T, et al., 1994. Piecewise smooth surface reconstruction. Proc 21st Annual Conf on Computer Graphics and Interactive Techniques, p.295-302. ![]() [26]Hu SM, Liu ZN, Guo MH, et al., 2022. Subdivision-based mesh convolution networks. ACM Trans Graph, 41(3):25. ![]() [27]Hu YX, Schneider T, Wang BL, et al., 2020. Fast tetrahedral meshing in the wild. ACM Trans Graph, 39(4):117. ![]() [28]Huang JW, Zhang HT, Yi L, et al., 2019. TextureNet: consistent local parametrizations for learning from high-resolution signals on meshes. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.4435-4444. ![]() [29]Jiao JB, Tu WC, He SF, et al., 2017. FormResNet: formatted residual learning for image restoration. Proc IEEE Conf on Computer Vision and Pattern Recognition Workshops, p.1034-1042. ![]() [30]Karčiauskas K, Peters J, 2007. Concentric tessellation maps and curvature continuous guided surfaces. Comput Aided Geom Des, 24(2):99-111. ![]() [31]Kim D, Shin M, Paik J, 2023. PU-Edgeformer: edge transformer for dense prediction in point cloud upsampling. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.1-5. ![]() [32]Kim J, Lee JK, Lee KM, 2016. Deeply-recursive convolutional network for image super-resolution. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.1637-1645. ![]() [33]Kingma DP, Ba J, 2015. Adam: a method for stochastic optimization. Proc 3rd Int Conf on Learning Representations. ![]() [34]Lahav A, Tal A, 2020. MeshWalker: deep mesh understanding by random walks. ACM Trans Graph, 39(6):263. ![]() [35]Lai WS, Huang JB, Ahuja N, et al., 2017. Deep Laplacian pyramid networks for fast and accurate super-resolution. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.5835-5843. ![]() [36]Levie R, Monti F, Bresson X, et al., 2019. CayleyNets: graph convolutional neural networks with complex rational spectral filters. IEEE Trans Signal Process, 67(1):97-109. ![]() [37]Levin A, 2006. Modified subdivision surfaces with continuous curvature. ACM Trans Graph, 25(3):1035-1040. ![]() [38]Li RH, Li XZ, Fu CW, et al., 2019. PU-GAN: a point cloud upsampling adversarial network. Proc IEEE/CVF Int Conf on Computer Vision, p.7202-7211. ![]() [39]Lim B, Son S, Kim H, et al., 2017. Enhanced deep residual networks for single image super-resolution. Proc IEEE Conf on Computer Vision and Pattern Recognition Workshops, p.1132-1140. ![]() [40]Lim I, Dielen A, Campen M, et al., 2019. A simple approach to intrinsic correspondence learning on unstructured 3D meshes. Proc European Conf on Computer Vision, p.349-362. ![]() [41]Liu HTD, Kim VG, Chaudhuri S, et al., 2020. Neural subdivision. ACM Trans Graph, 39(4):124. ![]() [42]Liu K, Ma N, Wang ZH, et al., 2023. Implicit neural distance optimization for mesh neural subdivision. Proc IEEE Int Conf on Multimedia and Expo, p.2039-2044. ![]() [43]Loop C, 1987. Smooth Subdivision Surfaces Based on Triangles. MS Thesis, University of Utah, Salt Lake City, USA. ![]() [44]Maron H, Galun M, Aigerman N, et al., 2017. Convolutional neural networks on surfaces via seamless toric covers. ACM Trans Graph, 36(4):71. ![]() [45]Milano F, Loquercio A, Rosinol A, et al., 2020. Primal-dual mesh convolutional neural networks. Proc 34th Int Conf on Neural Information Processing Systems, Article 81. ![]() [46]Monti F, Shchur O, Bojchevski A, et al., 2018. Dual-primal graph convolutional networks. ![]() [47]Nair V, Hinton GE, 2010. Rectified linear units improve restricted Boltzmann machines. Proc 27th Int Conf on Machine Learning, p.807-814. ![]() [48]Oliensis J, 1993. Local reproducible smoothing without shrinkage. IEEE Trans Patt Anal Mach Intell, 15(3):307-312. ![]() [49]Paszke A, Gross S, Massa F, et al., 2019. PyTorch: an imperative style, high-performance deep learning library. Proc 33rd Int Conf on Neural Information Processing Systems, Article 721. ![]() [50]Perez D, Shen YZ, Li J, 2023. Mesh convolutional networks with face and vertex feature operators. IEEE Trans Vis Comput Graph, 29(3):1678-1690. ![]() [51]Poulenard A, Ovsjanikov M, 2018. Multi-directional geodesic neural networks via equivariant convolution. ACM Trans Graph, 37(6):236. ![]() [52]Qi CR, Su H, Mo KC, et al., 2017. PointNet: deep learning on point sets for 3D classification and segmentation. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.77-85. ![]() [53]Qian GC, Abualshour A, Li GH, et al., 2021. PU-GCN: point cloud upsampling using graph convolutional networks. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.11678-11687. ![]() [54]Schaefer S, Vouga E, Goldman R, 2008. Nonlinear subdivision through nonlinear averaging. Comput Aided Geom Des, 25(3):162-180. ![]() [55]Sharp N, Attaiki S, Crane K, et al., 2022. DiffusionNet: discretization agnostic learning on surfaces. ACM Trans Graph, 41(3):27. ![]() [56]Smirnov D, Solomon J, 2021. HodgeNet: learning spectral geometry on triangle meshes. ACM Trans Graph, 40(4):166. ![]() [57]Sorkine O, Cohen-Or D, Lipman Y, et al., 2004. Laplacian surface editing. Proc Eurographics/ACM SIGGRAPH Symp on Geometry Processing, p.175-184. ![]() [58]Stam J, 1998. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values. Proc 25th Annual Conf on Computer Graphics and Interactive Techniques, p.395-404. ![]() [59]Tai Y, Yang J, Liu XM, 2017. Image super-resolution via deep recursive residual network. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.2790-2798. ![]() [60]Tatarchenko M, Park J, Koltun V, et al., 2018. Tangent convolutions for dense prediction in 3D. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.3887-3896. ![]() [61]Taubin G, 1995. A signal processing approach to fair surface design. Proc 22nd Annual Conf on Computer Graphics and Interactive Techniques, p.351-358. ![]() [62]Vaxman A, Müller C, Weber O, 2018. Canonical Möbius subdivision. ACM Trans Graph, 37(6):227. ![]() [63]Veličković P, Cucurull G, Casanova A, et al., 2018. Graph attention networks. ![]() [64]Wang NY, Zhang YD, Li ZW, et al., 2018. Pixel2Mesh: generating 3D mesh models from single RGB images. Proc 15th European Conf on Computer Vision, p.55-71. ![]() [65]Wang XT, Yu K, Wu SX, et al., 2018. ESRGAN: enhanced super-resolution generative adversarial networks. Proc European Conf on Computer Vision, p.63-79. ![]() [66]Wang Y, Sun YB, Liu ZW, et al., 2019. Dynamic graph CNN for learning on point clouds. ACM Trans Graph, 38(5):146. ![]() [67]Wang YF, Perazzi F, McWilliams B, et al., 2018. A fully progressive approach to single-image super-resolution. IEEE/CVF Conf on Computer Vision and Pattern Recognition Workshops. ![]() [68]Wang YF, Wu SH, Huang H, et al., 2019. Patch-based progressive 3D point set upsampling. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.5951-5960. ![]() [69]Wang ZH, Chen J, Hoi SCH, 2021. Deep learning for image super-resolution: a survey. IEEE Trans Patt Anal Mach Intell, 43(10):3365-3387. ![]() [70]Yang WM, Zhang XC, Tian YP, et al., 2019. Deep learning for single image super-resolution: a brief review. IEEE Trans Multim, 21(12):3106-3121. ![]() [71]Yu LQ, Li XZ, Fu CW, et al., 2018. PU-Net: point cloud upsampling network. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.2790-2799. ![]() [72]Zhou QN, Jacobson A, 2016. Thingi10K: a dataset of 10,000 3D-printing models. ![]() [73]Zorin D, 2007. Subdivision on arbitrary meshes: algorithms and theory. Proc Mathematics and Computation in Imaging Science and Information Processing, p.1-46. ![]() [74]Zorin D, Schröder P, Sweldens W, 1996. Interpolating subdivision for meshes with arbitrary topology. Proc 23rd Annual Conf on Computer Graphics and Interactive Techniques, p.189-192. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>