CLC number:
On-line Access: 2025-01-24
Received: 2024-04-30
Revision Accepted: 2024-10-04
Crosschecked: 2025-01-24
Cited: 0
Clicked: 452
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0003-0472-7314
https://orcid.org/0009-0004-5263-0845
https://orcid.org/0000-0002-2790-4638
Yicen LI, Mingyang CHANG, Hao XUE, Haixia LIU, Long LI. Simultaneous wireless information and power transmission system based on a dual-frequency metasurface design[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400345 @article{title="Simultaneous wireless information and power transmission system based on a dual-frequency metasurface design", %0 Journal Article TY - JOUR
基于双频超表面设计的携能通信系统西安电子科技大学电子工程学院,中国西安市,710071 摘要:现如今,无线传感器设备的数量正在迅速增加,这给重新更换电池和电源布线带来了长期的挑战。本文提出一种基于频率分集超表面设计的携能通信(SWIPT)方案,为传感器等电子设备提供了一种新的无线供电方案。超表面采用环境中常见的频段设计,可实现在5.8 GHz时高效接收电磁(EM)能量,在2.45 GHz时传输传感器信息,使其能够充分利用环境中的能量,并易于与现有系统集成。双方环的枝节是基于空间阻抗匹配和等效电路设计,具有体积小(单位尺寸为0.16λ0×0.16λ0×0.012λ0,其中λ0是2.45 GHz处的波长)、高隔离度(工作频带内S21<−20 dB)和对入射角不敏感(在60°内保持80%以上的效率)等优点。超表面与整流电路和传感器集成,可有效地将超表面接收到的电磁波转换为直流电以供传感器工作。然后,传感器通过超表面辐射信息,有效解决与传感器设备布线和电池更换相关的挑战,从而为下一代智慧城市的发展提供新的解决方案。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Andrews JG, Buzzi S, Choi W, et al., 2014. What will 5G be? IEEE J Sel Areas Commun, 32(6):1065-1082. ![]() [2]Bakogianni S, Koulouridis S, 2016. Design of a novel miniature implantable rectenna for in-body medical devices power support. Proc 10th European Conf on Antennas and Propagation, p.1-5. ![]() [3]Chang MY, Li YC, Han JQ, et al., 2024. A compact polarization insensitive rectenna with harmonic suppression for wireless power transfer. IEEE Antenn Wirel Propag Lett, 23(1):119-123. ![]() [4]Cheng HW, Yu TC, Luo CH, 2013. Direct current driving impedance matching method for rectenna using medical implant communication service band for wireless battery charging. IET Microw Antenn Propag, 7(4):277-282. ![]() [5]El Badawe M, Ramahi OM, 2018. Efficient metasurface rectenna for electromagnetic wireless power transfer and energy harvesting. Prog Electromagn Res, 161:35-40. ![]() [6]Erkmen F, Ramahi OM, 2021. A scalable, dual-polarized absorber surface for electromagnetic energy harvesting and wireless power transfer. IEEE Trans Microw Theory Techn, 69(9):4021-4028. ![]() [7]Fang C, Yu FR, Huang T, et al., 2015. A survey of green information-centric networking: research issues and challenges. IEEE Commun Surv Tut, 17(3):1455-1472. ![]() [8]Fante RL, McCormack MT, 1988. Reflection properties of the Salisbury screen. IEEE Trans Antenn Propag, 36(10):1443-1454. ![]() [9]Gao X, Wang XR, Wang WJ, 2023. Polarization-independent dual-band metasurface absorber for wireless power transmission. J Phys Conf Ser, 2469(1):012003. ![]() [10]Gong TR, Gavriilidis P, Ji R, et al., 2024. Holographic MIMO communications: theoretical foundations, enabling technologies, and future directions. IEEE Commun Surv Tut, 26(1):196-257. ![]() [11]Huang XJ, Wang K, Sun CZ, et al., 2023. A multi-frequency and multi-mode metasurface energy harvester for RF energy harvesting. Smart Mater Struct, 32(10):105010. ![]() [12]Langley RJ, Parker EA, 1983. Double-square frequency-selective surfaces and their equivalent circuit. Electron Lett, 19(17):675-677. ![]() [13]Lee K, Hong SK, 2020. Rectifying metasurface with high efficiency at low power for 2.45 GHz band. IEEE Antenn Wirel Propag Lett, 19(12):2216-2220. ![]() [14]Li L, Liu HX, Zhang HY, et al., 2018. Efficient wireless power transfer system integrating with metasurface for biological applications. IEEE Trans Ind Electron, 65(4):3230-3239. ![]() [15]Liao R, Chen L, 2022. An evolutionary note on smart city development in China. Front Inform Technol Electron Eng, 23(6):966-974. ![]() [16]Lin W, Ziolkowski RW, 2019. Electrically small Huygens antenna-based fully-integrated wireless power transfer and communication system. IEEE Access, 7:39762-39769. ![]() [17]Liu HX, Li YC, Cheng FJ, et al., 2024. Holographic tensor metasurface for simultaneous wireless powers and information transmissions using polarization diversity. Adv Funct Mater, 34(2):2307806. ![]() [18]Lu P, Yang XS, Wang BZ, 2017. A two-channel frequency reconfigurable rectenna for microwave power transmission and data communication. IEEE Trans Antenn Propag, 65(12):6976-6985. ![]() [19]Mohsan SAH, Qian H, Amjad H, 2023. A comprehensive review of optical wireless power transfer technology. Front Inform Technol Electron Eng, 24(6):767-800. ![]() [20]Piñuela M, Mitcheson PD, Lucyszyn S, 2013. Ambient RF energy harvesting in urban and semi-urban environments. IEEE Trans Microw Theory Techn, 61(7):2715-2726. ![]() [21]Shan Z, Shi L, Li B, et al., 2024. Empowering smart city situational awareness via big mobile data. Front Inform Technol Electron Eng, 25(2):286-307. ![]() [22]Shibata T, Sasaya T, Kawahara N, 2001. Development of in‐pipe microrobot using microwave energy transmission. Electron Commun Jpn (Part II Electron), 84(11):1-8. ![]() [23]Wagih M, Hilton GS, Weddell AS, et al., 2021. Dual-band dual-mode textile antenna/rectenna for simultaneous wireless information and power transfer (SWIPT). IEEE Trans Antenn Propag, 69(10):6322-6332. ![]() [24]Wang CC, Zhang JL, Bai SB, et al., 2022. A harmonic suppression energy collection metasurface insensitive to load and input power for microwave power transmission. IEEE Trans Microw Theory Techn, 70(8):4036-4044. ![]() [25]Wang X, Han JQ, Li GX, et al., 2023. High-performance cost efficient simultaneous wireless information and power transfers deploying jointly modulated amplifying programmable metasurface. Nat Commun, 14(1):6002. ![]() [26]Xue H, Lu ZQ, Ma XJ, et al., 2024. A reconfigurable metasurface enhancing signal coverage for wireless communication using reduced numbers of p-i-n diodes. IEEE Trans Microw Theory Techn, 72(3):1964-1978. ![]() [27]Yang XX, Jiang C, Elsherbeni AZ, et al., 2013. A novel compact printed rectenna for data communication systems. IEEE Trans Antenn Propag, 61(5):2532-2539. ![]() [28]Yu F, Yang XX, Zhong HT, et al., 2018. Polarization-insensitive wide-angle-reception metasurface with simplified structure for harvesting electromagnetic energy. Appl Phys Lett, 113(12):123903. ![]() [29]Zhang XM, Liu HX, Li L, 2017. Tri-band miniaturized wide-angle and polarization-insensitive metasurface for ambient energy harvesting. Appl Phys Lett, 111(7):071902. ![]() [30]Zhong HT, Yang XX, Tan C, et al., 2016. Triple-band polarization-insensitive and wide-angle metamaterial array for electromagnetic energy harvesting. Appl Phys Lett, 109(25):253904. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>