CLC number: TN92
On-line Access: 2025-01-24
Received: 2024-05-09
Revision Accepted: 2025-01-24
Crosschecked: 2024-10-21
Cited: 0
Clicked: 516
Citations: Bibtex RefMan EndNote GB/T7714
Zhichao CHENG, Shupei ZHANG, Shu FU, Boya DI. Hybrid near- and far-field three-stage beam training with beam split for RIS-assisted OFDM communications[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400372 @article{title="Hybrid near- and far-field three-stage beam training with beam split for RIS-assisted OFDM communications", %0 Journal Article TY - JOUR
RIS辅助OFDM通信的混合近-远场波束分裂三阶段波束训练1北京大学信息科学技术学院,中国北京市,100871 2北京大学电子学院区域光纤通信网与新型光通信系统国家重点实验室,中国北京市,100871 3重庆大学微电子与通信工程学院,中国重庆市,400044 摘要:随着毫米波通信系统的发展,大规模可重构智能超表面(RIS)作为一种增强信号强度和扩展覆盖范围的潜力技术,受到广泛关注。然而,随着天线规模和带宽的增加,RIS辅助的宽带正交频分复用(OFDM)通信系统在高频段面临着近场范围扩展和波束分裂效应带来的挑战,导致信道状态信息(CSI)的获取更加困难。为应对这些挑战,本文利用波束分裂效应提出一种基于码本的三阶段波束训练方案,从而避免了CSI估计。具体而言,分析了RIS辅助OFDM通信系统中的波束分裂效应,设计了一种波束分裂感知码本。与传统窄带码本相比,该码本使用更少的码字即可覆盖近场和远场。基于此码本,三阶段波束训练机制得以实施,该机制以低时间开销获得最优码字,从而便于后续波束成形。仿真结果表明,在混合近-远场条件下,所提方案在波束训练准确率和数据传输速率方面优于现有基于近场或远场窄带码本的方案。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Basar E, di Renzo M, de Rosny J, et al., 2019. Wireless communications through reconfigurable intelligent surfaces. IEEE Access, 7:116753-116773. ![]() [2]Boljanovic V, Yan H, Lin CC, et al., 2021. Fast beam training with true-time-delay arrays in wideband millimeter-wave systems. IEEE Trans Circ Syst I Reg Pap, 68(4):1727-1739. ![]() [3]Chen YH, Tan JB, Hao M, et al., 2023. Accurate beam training for RIS-assisted wideband terahertz communication. IEEE Trans Commun, 71(12):7425-7440. ![]() [4]Chen Z, Sun Z, Pei YK, et al., 2022. Generalized sparse codes for non-Gaussian channels: code design, algorithms, and applications. Fundam Res, 2(2):284-295. ![]() [5]Cheng Q, Jin S, Cui TJ, et al., 2023. Reconfigurable intelligent surfaces for wireless communications. Front Inform Technol Electron Eng, 24(12):1665-1668. ![]() [6]Cui MY, Dai LL, 2022. Channel estimation for extremely large-scale MIMO: far-field or near-field? IEEE Trans Commun, 70(4):2663-2677. ![]() [7]Cui MY, Dai LL, Wang ZC, et al., 2023. Near-field rainbow: wideband beam training for XL-MIMO. IEEE Trans Wirel Commun, 22(6):3899-3912. ![]() [8]Elayan H, Amin O, Shihada B, et al., 2020. Terahertz band: the last piece of RF spectrum puzzle for communication systems. IEEE Open J Commun Soc, 1:1-32. ![]() [9]Gao FF, Xu LY, Ma SD, 2023. Integrated sensing and communications with joint beam-squint and beam-split for mmWave/THz massive MIMO. IEEE Trans Commun, 71(5):2963-2976. ![]() [10]Hu C, Dai LL, Han SF, et al., 2021. Two-timescale channel estimation for reconfigurable intelligent surface aided wireless communications. IEEE Trans Commun, 69(11):7736-7747. ![]() [11]Ju SH, Xing YC, Kanhere O, et al., 2021. Millimeter wave and sub-terahertz spatial statistical channel model for an indoor office building. IEEE J Sel Areas Commun, 39(6):1561-1575. ![]() [12]Lin C, Li GY, Wang L, 2017. Subarray-based coordinated beamforming training for mmWave and sub-THz communications. IEEE J Sel Areas Commun, 35(9):2115-2126. ![]() [13]Liu W, Pan CH, Ren H, et al., 2023. Low-overhead beam training scheme for extremely large-scale RIS in near field. IEEE Trans Commun, 71(8):4924-4940. ![]() [14]Liu YW, Liu X, Mu XD, et al., 2021. Reconfigurable intelligent surfaces: principles and opportunities. IEEE Commun Surv Tutor, 23(3):1546-1577. ![]() [15]Liu YW, Wang ZL, Xu JQ, et al., 2023. Near-field communications: a tutorial review. IEEE Open J Commun Soc, 4:1999-2049. ![]() [16]Mamat K, Santipach W, 2012. Subcarrier clustering for MISO-OFDM channels with quantized beamforming. 9th Int Conf on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, p.1-4. ![]() [17]Piesiewicz R, Kleine-Ostmann T, Krumbholz N, et al., 2007. Short-range ultra-broadband terahertz communications: concepts and perspectives. IEEE Antenn Propag Mag, 49(6):24-39. ![]() [18]Quan YH, Tian Z, Chen CZ, et al., 2023. Max-min rate optimization for multi-user MISO-OFDM systems assisted by RIS with a wideband model. Front Inform Technol Electron Eng, 24(12):1763-1775. ![]() [19]Salim OH, Nasir AA, Mehrpouyan H, et al., 2014. Channel, phase noise, and frequency offset in OFDM systems: joint estimation, data detection, and hybrid Cramér-Rao lower bound. IEEE Trans Commun, 62(9):3311-3325. ![]() [20]Selvan KT, Janaswamy R, 2017. Fraunhofer and Fresnel distances: unified derivation for aperture antennas. IEEE Antenn Propag Mag, 59(4):12-15. ![]() [21]Sherman J, 1962. Properties of focused apertures in the Fresnel region. IRE Trans Antenn Propag, 10(4):399-408. ![]() [22]Shi X, Wang JT, Sun Z, et al., 2024. Spatial-chirp codebook-based hierarchical beam training for extremely large-scale massive MIMO. IEEE Trans Wirel Commun, 23(4):2824-2838. ![]() [23]Shlezinger N, Dicker O, Eldar YC, et al., 2019. Dynamic metasurface antennas for uplink massive MIMO systems. IEEE Trans Commun, 67(10):6829-6843. ![]() [24]Suraweera HA, Armstrong J, 2004. Noise bucket effect for impulse noise in OFDM. Electron Lett, 40(18):1156-1157. ![]() [25]Tang WK, Dai JY, Chen MZ, et al., 2020. MIMO transmission through reconfigurable intelligent surface: system design, analysis, and implementation. IEEE J Sel Areas Commun, 38(11):2683-2699. ![]() [26]Tariq F, Khandaker MRA, Wong KK, et al., 2020. A speculative study on 6G. IEEE Wirel Commun, 27(4):118-125. ![]() [27]Wang BL, Gao FF, Jin S, et al., 2018. Spatial-wideband effect in massive MIMO with application in mmWave systems. IEEE Commun Mag, 56(12):134-141. ![]() [28]Wang X, Kong LH, Kong FX, et al., 2018. Millimeter wave communication: a comprehensive survey. IEEE Commun Surv Tutor, 20(3):1616-1653. ![]() [29]Wu CY, You CS, Liu YW, et al., 2024. Two-stage hierarchical beam training for near-field communications. IEEE Trans Veh Technol, 73(2):2032-2044. ![]() [30]Wu QQ, Zhang R, 2020. Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network. IEEE Commun Mag, 58(1):106-112. ![]() [31]Wu W, Liu DP, Hou XL, et al., 2020. Low-complexity beam training for 5G millimeter-wave massive MIMO systems. IEEE Trans Veh Technol, 69(1):361-376. ![]() [32]Xiao ZY, He T, Xia PF, et al., 2016. Hierarchical codebook design for beamforming training in millimeter-wave communication. IEEE Trans Wirel Commun, 15(5):3380-3392. ![]() [33]Yang SJ, Xie CF, Lyu WT, et al., 2024. Near-field channel estimation for extremely large-scale reconfigurable intelligent surface (XL-RIS)-aided wideband mmWave systems. IEEE J Sel Areas Commun, 42(6):1567-1582. ![]() [34]Yue SH, Zeng SH, Zhang HL, et al., 2023. Intelligent omni-surfaces aided wireless communications: does the reciprocity hold? IEEE Trans Veh Technol, 72(6):8181-8185. ![]() [35]Yue SH, Zeng SH, Liu L, et al., 2024. Hybrid near-far field channel estimation for holographic MIMO communications. IEEE Trans Wirel Commun, 23(11):15798-15813. ![]() [36]Zhang HB, Zhang HL, Di BY, et al., 2022. Holographic integrated sensing and communication. IEEE J Sel Areas Commun, 40(7):2114-2130. ![]() [37]Zhang SP, Zhang YT, Zhang HL, et al., 2023. Rate-overhead tradeoff for IOS-aided beam training: how large codebook is enough for the IOS? IEEE Wirel Commun Lett, 12(6):1081-1085. ![]() [38]Zhang YP, You CS, 2024. SWIPT in mixed near- and far-field channels: joint beam scheduling and power allocation. IEEE J Sel Areas Commun, 42(6):1583-1597. ![]() [39]Zhang YP, Wu X, You CS, 2022. Fast near-field beam training for extremely large-scale array. IEEE Wirel Commun Lett, 11(12):2625-2629. ![]() [40]Zhang YT, Di BY, Zhang HL, et al., 2023. Near-far field beamforming for holographic multiple-input multiple-output. J Commun Inform Netw, 8(2):99-110. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>