Full Text:  <47>

Suppl. Mater.: 

Summary:  <2>

CLC number: 

On-line Access: 2025-01-24

Received: 2024-05-10

Revision Accepted: 2024-11-07

Crosschecked: 2025-01-24

Cited: 0

Clicked: 76

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yu GAN

https://orcid.org/0009-0006-9905-6240

Hongfu MENG

https://orcid.org/0000-0003-1777-9199

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


An orbital angular momentum multiplexing communication system at 28 GHz with an active uniform circular array


Author(s):  Yu GAN, Lin LIU, Jian BAI, Hongfu MENG

Affiliation(s):  State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China; more

Corresponding email(s):  menghongfu@163.com

Key Words: 


Share this article to: More <<< Previous Paper|

Yu GAN, Lin LIU, Jian BAI, Hongfu MENG. An orbital angular momentum multiplexing communication system at 28 GHz with an active uniform circular array[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400376

@article{title="An orbital angular momentum multiplexing communication system at 28 GHz with an active uniform circular array",
author="Yu GAN, Lin LIU, Jian BAI, Hongfu MENG",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.2400376"
}

%0 Journal Article
%T An orbital angular momentum multiplexing communication system at 28 GHz with an active uniform circular array
%A Yu GAN
%A Lin LIU
%A Jian BAI
%A Hongfu MENG
%J Frontiers of Information Technology & Electronic Engineering
%P 1759-1768
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.2400376"

TY - JOUR
T1 - An orbital angular momentum multiplexing communication system at 28 GHz with an active uniform circular array
A1 - Yu GAN
A1 - Lin LIU
A1 - Jian BAI
A1 - Hongfu MENG
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 1759
EP - 1768
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.2400376"


Abstract: 
This paper presents an orbital angular momentum (OAM) multiplexing communication system employing active uniform circular arrays (UCAs) to achieve simultaneous five-mode transmission. At 28 GHz, dual-loop UCAs are implemented in the transceiver, in which four UCAs comprising multiple 4×4 microstrip subarrays are placed concentrically. The next stage of each channel is an active transmitter and receiver (T/R) module, which is composed of a beamformer integrated circuit (IC) and a feed network. Additionally, a central antenna with the ability to transmit mode 0 is integrated. Similar to the active phased array system, both the receiving and transmitting modes are reconfigurable by adjusting the phase shifter. According to specific requirements, the modes of different UCAs can be assigned arbitrarily, and the receiving and transmitting states of each UCA can be configured independently. In this study, a 6-m OAM link with data transmission rate of 3 Gbit/s has been successfully implemented.

基于有源均匀圆阵列的28GHz轨道角动量复用通信系统

甘宇1,刘琳2,白剑2,孟洪福1
1东南大学信息科学与工程学院毫米波全国重点实验室,中国南京市,210096
2北京遥感设备研究所,中国北京市,100071
摘要:本文提出一种采用有源均匀圆阵列(UCAs)实现五模态同时传输的轨道角动量(OAM)复用通信系统。在28 GHz的中心频率下,设计了双环圆阵列收发阵面,每个阵面由多个4×4微带子阵列组成。每个模态采用独立的有源收发模块(T/R),其T/R由波束形成集成电路和馈电网络组成。装置中央额外集成了可以传输模态0的天线。与有源相控阵系统类似,装置能够通过调整移相器来重新配置接收和发射的模态。可以按照具体需求分配不同的OAM模式给各组UCA,且每个UCA的接收和发送状态可以独立配置。在本研究中,设计了一个距离为6米的OAM复用通信链路,实现了3 Gbit/s的数据传输速率。

关键词组:轨道角动量;有源相控阵;通信系统

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Cheng Q, Jin S, Cui TJ, 2023. Reconfigurable intelligent surfaces for wireless communications. Front Inform Technol Electron Eng, 24(12):1665-1668.

[2]Gesbert D, Shafi M, Shiu DS, et al., 2003. From theory to practice: an overview of MIMO space-time coded wireless systems. IEEE J Sel Areas Commun, 21(3):281-302.

[3]Gibson G, Courtial J, Padgett MJ, et al., 2004. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express, 12(22):5448-5456.

[4]Guo ZG, Yang GM, Jin YQ, 2018. Circularly polarised OAM antenna using an aperture-coupled uniform circular array. IET Microw Antenn Propag, 12(9):1594-1600.

[5]Kang L, Li H, Zhou JZ, et al., 2019. A mode-reconfigurable orbital angular momentum antenna with simplified feeding scheme. IEEE Trans Antenn Propag, 67(7):4866-4871.

[6]Lee D, Sasaki H, Fukumoto H, et al., 2018. An experimental demonstration of 28 GHz band wireless OAM-MIMO (orbital angular momentum multi-input and multi-output) multiplexing. Proc 87th Vehicular Technology Conf, p.1-5.

[7]Nguyen T, Hirabe M, Miyamoto H, et al., 2018. An experimental study of high-capacity link using orbital angular momentum mode multiplexing in E-band. Proc Int Symp on Antennas and Propagation, p.1-2.

[8]Qiu LJ, Li XP, Qi ZH, et al., 2023. Wideband circular-polarized transmitarray for generating a high-purity vortex beam. Front Inform Technol Electron Eng, 24(6):927-934.

[9]Sasaki H, Yagi Y, Yamada T, et al., 2019. Field experimental demonstration on OAM-MIMO wireless transmission on 28 GHz band. Proc IEEE Globecom Workshops, p.1-4.

[10]Tamburini F, Mari E, Parisi G, et al., 2015. Tripling the capacity of a point-to-point radio link by using electromagnetic vortices. Radio Sci, 50(6):501-508.

[11]Thidé B, Then H, Sjöholm J, et al., 2007. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys Rev Lett, 99(8):087701.

[12]Tian H, Liu ZQ, Xi W, et al., 2016. Beam axis detection and alignment for uniform circular array-based orbital angular momentum wireless communication. IET Commun, 10(1):44-49.

[13]Yan Y, Xie GD, Lavery MPJ, et al., 2014. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat Commun, 5(1):4876.

[14]Yan Y, Li L, Zhao Z, et al., 2016. 32-Gbit/s 60-GHz millimeter-wave wireless communication using orbital angular momentum and polarization multiplexing. Proc IEEE Int Conf on Communications, p.1-6.

[15]Yang LJ, Sun S, Sha WEI, et al., 2023. Multi-feed multi-mode metasurface for independent orbital angular momentum communication in dual polarization. Front Inform Technol Electron Eng, 24(12):1776-1790.

[16]Yousif BB, Elsayed EE, Alzalabani MM, 2019. Atmospheric turbulence mitigation using spatial mode multiplexing and modified pulse position modulation in hybrid RF/FSO orbital-angular-momentum multiplexed based on MIMO wireless communications system. Opt Commun, 436:197-208.

[17]Zhang Q, Xiong XS, Li Q, et al., 2021. Modeling and performance analysis of OAM-GSM millimeter-wave wireless communication systems. Front Inform Technol Electron Eng, 22(4):527-547.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE