Full Text:  <561>

CLC number: TN929.5

On-line Access: 2025-06-04

Received: 2024-05-28

Revision Accepted: 2024-10-15

Crosschecked: 2025-06-04

Cited: 0

Clicked: 507

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Min JIA

0000-0003-3551-8654

Jian WU

0009-0003-8460-1064

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Federated deep reinforcement learning based computation offloading in a low Earth orbit satellite edge computing system


Author(s):  Min JIA, Jian WU, Xinyu WANG, Qing GUO

Affiliation(s):  School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150006, China

Corresponding email(s):  jiamin@hit.edu.cn, 20B905014@stu.hit.edu.cn, wang_xinyu@hit.edu.cn, qguo@hit.edu.cn

Key Words:  Federated learning; Low Earth orbit satellite; Mobile edge computing; Deep reinforcement learning; Computation offloading


Share this article to: More <<< Previous Paper|Next Paper >>>

Min JIA, Jian WU, Xinyu WANG, Qing GUO. Federated deep reinforcement learning based computation offloading in a low Earth orbit satellite edge computing system[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400448

@article{title="Federated deep reinforcement learning based computation offloading in a low Earth orbit satellite edge computing system",
author="Min JIA, Jian WU, Xinyu WANG, Qing GUO",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.2400448"
}

%0 Journal Article
%T Federated deep reinforcement learning based computation offloading in a low Earth orbit satellite edge computing system
%A Min JIA
%A Jian WU
%A Xinyu WANG
%A Qing GUO
%J Frontiers of Information Technology & Electronic Engineering
%P 805-815
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.2400448"

TY - JOUR
T1 - Federated deep reinforcement learning based computation offloading in a low Earth orbit satellite edge computing system
A1 - Min JIA
A1 - Jian WU
A1 - Xinyu WANG
A1 - Qing GUO
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 805
EP - 815
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.2400448"


Abstract: 
Recent studies have shown that system capacity is very important for cellular networks. In this paper, we consider maximizing the weighted sum-rate of the cellular network downlink and uplink, where each cell consists of a full-duplex (FD) base station (BS) and half-duplex (HD) users. Federated learning (FL) can train models in the absence of centralized data, which can achieve privacy protection of user data. A low Earth orbit (LEO) satellite edge computing system (LSECS) can be formed by placing the mobile edge computing (MEC) servers on LEO satellites, which greatly increases the processing capacities of the satellites. Therefore, we consider a combination of FL and MEC and propose an FL-based computation offloading algorithm to maximize the weighted sum-rate while ensuring the security of user data. We consider solving the sub-channel assignment and power allocation problems using deep reinforcement learning (DRL) algorithms with excellent global search capabilities. The simulation results show that our proposed algorithm achieves the maximum weighted sum-rate compared with the baseline algorithms and excellent convergence.

基于联邦深度强化学习的低轨卫星边缘计算系统计算卸载

贾敏,吴健,王欣玉,郭庆
哈尔滨工业大学电子与信息工程学院,中国哈尔滨市,150006
摘要:最近研究表明系统容量对蜂窝网络非常重要。本文考虑最大化蜂窝网络下行链路和上行链路的加权和速率,其中每个小区由一个全双工基站和半双工用户组成。联邦学习可以在没有集中数据的情况下训练模型,实现对用户数据的隐私保护。将移动边缘计算服务器放置在低轨卫星上,可形成低轨卫星边缘计算系统,大大提高卫星的处理能力。因此,本文将联邦学习和移动边缘计算结合,提出一种基于联邦学习的计算卸载算法,在保证用户数据安全的同时最大化加权和速率。采用具有出色全局搜索能力的深度强化学习算法解决子信道分配和功率分配问题。仿真结果表明,与基准算法相比,该算法实现了最大的加权和速率,并具有良好收敛性能。

关键词组:联邦学习;低轨卫星;移动边缘计算;深度强化学习;计算卸载

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alkhrijah Y, Camp J, Rajan D, 2023. Multi-band full duplex MAC protocol (MB-FDMAC). IEEE J Sel Areas Commun, 41(9):2864-2878.

[2]Chen H, Xiao M, Pang ZB, 2022. Satellite-based computing networks with federated learning. IEEE Wirel Commun, 29(1):78-84.

[3]Chen XM, Xu ZB, Shang L, 2023. Satellite Internet of Things: challenges, solutions, and development trends. Front Inform Technol Electron Eng, 24(7):935-944.

[4]Dai XY, Zhao C, Wang X, et al., 2022. Image-based traffic signal control via world models. Front Inform Technol Electron Eng, 23(12):1795-1813.

[5]El Houda ZA, Moudoud H, Brik B, 2024. Federated deep reinforcement learning for efficient jamming attack mitigation in O-RAN. IEEE Trans Veh Technol, 73(7):9334-9343.

[6]Fawaz H, Lahoud S, Helou ME, et al., 2023. Queue-aware resource allocation in full-duplex multi-cellular wireless networks. IEEE J Sel Areas Commun, 41(9):2852-2863.

[7]Fu H, Si WJ, Kim IM, 2023. Deep learning-based joint pilot design and channel estimation for OFDM systems. IEEE Trans Commun, 71(8):4577-4590.

[8]Gao YF, Ji Z, Zhao KL, et al., 2024. Game-based computation offloading and power allocation for LEO constellation networks in distributed and dynamic environment. IEEE Int Things J, 11(4):7040-7058.

[9]Han DJ, Hosseinalipour S, Love DJ, et al., 2024. Cooperative federated learning over ground-to-satellite integrated networks: joint local computation and data offloading. IEEE J Sel Areas Commun, 42(5):1080-1096.

[10]He ZY, Xu W, Shen H, et al., 2023. Full-duplex communication for ISAC: joint beamforming and power optimization. IEEE J Sel Areas Commun, 41(9):2920-2936.

[11]Jia M, Wu J, Zhang L, et al., 2023. Joint optimization communication and computing resource for LEO satellites with edge computing. Chin J Electron, 32(5):1011-1021.

[12]Jia M, Wu J, Guo Q, et al., 2024. Service-oriented SAGIN with pervasive intelligence for resource-constrained users. IEEE Netw, 38(2):79-86.

[13]Kamal M, Rashid I, Iqbal W, et al., 2023. Privacy and security federated reference architecture for Internet of Things. Front Inform Technol Electron Eng, 24(4):481-508.

[14]Kang YH, Zhu YF, Wang D, et al., 2024. Joint server selection and handover design for satellite-based federated learning using mean-field evolutionary approach. IEEE Trans Netw Sci Eng, 11(2):1655-1667.

[15]Liao Y, Yang ZJ, Yin ZS, et al., 2023. DQN-based adaptive MCS and SDM for 5G massive MIMO-OFDM downlink. IEEE Commun Lett, 27(1):185-189.

[16]Lim B, Vu M, 2023. Distributed multi-agent deep Q-learning for load balancing user association in dense networks. IEEE Wirel Commun Lett, 12(7):1120-1124.

[17]Liu PX, Jiang JM, Zhu GX, et al., 2022. Training time minimization for federated edge learning with optimized gradient quantization and bandwidth allocation. Front Inform Technol Electron Eng, 23(8):1247-1263.

[18]Lv ZH, Xiu WQ, 2020. Interaction of edge-cloud computing based on SDN and NFV for next generation IoT. IEEE Int Things J, 7(7):5706-5712.

[19]Razmi N, Matthiesen B, Dekorsy A, et al., 2022. Ground-assisted federated learning in LEO satellite constellations. IEEE Wirel Commun Lett, 11(4):717-721.

[20]Salim S, Moustafa N, Hassanian M, et al., 2024. Deep-federated-learning-based threat detection model for extreme satellite communications. IEEE Int Things J, 11(3):3853-3867.

[21]Sultan R, Shamseldeen A, 2024. Uplink-downlink cochannel interference cancellation in RIS-aided full-duplex networks. IEEE Syst J, 18(2):1220-1223.

[22]Sun YW, Duan BY, Su X, et al., 2023. Performance analysis on reconfigurable intelligent surface and network-controlled repeater in 3GPP release-18. Front Inform Technol Electron Eng, 24(12):1815-1828.

[23]Tang FX, Wen C, Chen XH, et al., 2023. Federated learning for intelligent transmission with space-air-ground integrated network toward 6G. IEEE Netw, 37(2):198-204.

[24]Teklu MB, Choi DY, Meng WX, 2024. Resource efficient full-duplex mode of transmissions under imperfect CSI. IEEE Trans Broadcast, 70(1):87-98.

[25]Tran DD, Sharma SK, Ha VN, et al., 2023. Multi-agent DRL approach for energy-efficient resource allocation in URLLC-enabled grant-free NOMA systems. IEEE Open J Commun Soc, 4:1470-1486.

[26]Uddin R, Kumar SAP, 2023. SDN-based federated learning approach for satellite-IoT framework to enhance data security and privacy in space communication. IEEE J Radio Freq Identif, 7:424-440.

[27]Vishnoi V, Budhiraja I, Gupta S, et al., 2023. A deep reinforcement learning scheme for sum rate and fairness maximization among D2D pairs underlaying cellular network with NOMA. IEEE Trans Veh Technol, 72(10):13506-13522.

[28]Wang Q, Chen XM, Qi Q, 2024. Energy-efficient design of satellite-terrestrial computing in 6G wireless networks. IEEE Trans Commun, 72(3):1759-1772.

[29]Wang ZJ, Gao WF, Li GH, et al., 2024. Path planning for unmanned aerial vehicle via off-policy reinforcement learning with enhanced exploration. IEEE Trans Emerg Top Comput Intell, 8(3):2625-2639.

[30]Wu J, Jia M, Zhang NT, et al., 2024. Multi-agent deep reinforcement learning-based computation offloading in LEO satellite edge computing system. IEEE Commun Lett, 28(10):2352-2356.

[31]Xiao Y, Song YQ, Liu J, 2023. Multi-agent deep reinforcement learning based resource allocation for ultra-reliable low-latency Internet of Controllable Things. IEEE Trans Wirel Commun, 22(8):5414-5430.

[32]Xu HT, Han SY, Li XH, et al., 2023. Anomaly traffic detection based on communication-efficient federated learning in space-air-ground integration network. IEEE Trans Wirel Commun, 22(12):9346-9360.

[33]Xu X, Li RP, Zhao ZF, et al., 2024. The gradient convergence bound of federated multi-agent reinforcement learning with efficient communication. IEEE Trans Wirel Commun, 23(1):507-528.

[34]Yu B, Qian C, Lee J, et al., 2023. Realizing high power full duplex in millimeter wave system: design, prototype and results. IEEE J Sel Areas Commun, 41(9):2893-2906.

[35]Zhao D, Zheng Z, Qi PF, et al., 2024. Resource allocation in multi-user cellular networks: a Transformer-based deep reinforcement learning approach. China Commun, 21(5):77-96.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE