CLC number:
On-line Access: 2025-01-24
Received: 2024-06-04
Revision Accepted: 2025-01-24
Crosschecked: 2024-10-10
Cited: 0
Clicked: 444
Zelong CUI, Jun LIU, Gang YANG. XL-RIS empowered near-field physical layer security against jamming and eavesdropping attacks[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400477 @article{title="XL-RIS empowered near-field physical layer security against jamming and eavesdropping attacks", %0 Journal Article TY - JOUR
超大规模可重构智能表面赋能的抗干扰防窃听近场物理层安全1电子科技大学通信抗干扰全国重点实验室,中国成都市,611731 2电子科技大学(深圳)高等研究院,中国深圳市,518110 摘要:无线通信由于其广播特性而容易受到恶意干扰和窃听攻击的影响。超大规模可重构智能表面展示了其增强物理层安全并补偿严重路径损耗的能力。本文研究了一种超大规模可重构智能表面赋能的抗干扰、防窃听近场物理层安全通信系统,该系统借助人工噪声来抵御干扰和窃听攻击。为最大化保密容量,提出一种交替优化算法,在基站最大发射功率和超大规模可重构智能表面单位模约束下,联合优化基站处的波束成形器和超大规模可重构智能表面处的反射系数矩阵。对于基站的波束成形和人工噪声设计,引入辅助变量将子问题变换为易处理的形式,并通过所提基于连续凸逼近的算法求解。对于超大规模可重构智能表面处的反射系数矩阵设计,提出基于流形优化算法应对大规模变量及单位模约束的挑战。数值结果表明,即使窃听者位于合法用户相同方向且距离超大规模可重构智能表面更近,仍能确保安全通信。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Boyd S, Vandenberghe L, 2004. Convex Optimization. Cambridge University Press, Cambridge, UK. ![]() [2]Boyd S, Vandenberghe L, Faybusovich L, 2006. Convex optimization. IEEE Trans Autom Contr, 51(11):1859. ![]() [3]Cheng Q, Jin S, Cui TJ, 2023. Reconfigurable intelligent surfaces for wireless communications. Front Inform Technol Electron Eng, 24(12):1665-1668. ![]() [4]di Renzo M, Zappone A, Debbah M, et al., 2020. Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and the road ahead. IEEE J Sel Areas Commun, 38(11):2450-2525. ![]() [5]Guo HY, Liang YC, Chen J, et al., 2020. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks. IEEE Trans Wirel Commun, 19(5):3064-3076. ![]() [6]Liang LP, Cheng WC, Zhang W, et al., 2018. Mode hopping for anti-jamming in radio vortex wireless communications. IEEE Trans Veh Technol, 67(8):7018-7032. ![]() [7]Liu J, Yang G, Liang YC, et al., 2024a. Max-min fairness in RIS-assisted anti-jamming communications: optimization versus deep reinforcement learning approaches. IEEE Trans Commun, 72(7):4476-4492. ![]() [8]Liu J, Yang G, Liu YW, et al., 2024b. RIS empowered near-field covert communications. IEEE Trans Wirel Commun, 23(10):15477-15492. ![]() [9]Liu YW, Wang ZL, Xu JQ, et al., 2023. Near-field communications: a tutorial review. IEEE Open J Commun Soc, 4:1999-2049. ![]() [10]Liu ZH, Liu HB, Xu WY, et al., 2014. An error-minimizing framework for localizing jammers in wireless networks. IEEE Trans Parall Distrib Syst, 25(2):508-517. ![]() [11]Ma YD, Liu K, Liu YM, et al., 2024. Secure transmission via hybrid active-passive RIS against eavesdropping and jamming. IEEE Wirel Commun Lett, 13(7):1978-1982. ![]() [12]Moon J, Lee H, Song C, et al., 2018. Proactive eavesdropping with full-duplex relay and cooperative jamming. IEEE Trans Wirel Commun, 17(10):6707-6719. ![]() [13]Mukherjee A, Swindlehurst AL, 2012. Detecting passive eavesdroppers in the MIMO wiretap channel. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.2809-2812. ![]() [14]Nguyen VL, Lin PC, Cheng BC, et al., 2021. Security and privacy for 6G: a survey on prospective technologies and challenges. IEEE Commun Surv Tutor, 23(4):2384-2428. ![]() [15]Pan CH, Ren H, Wang KZ, et al., 2020. Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer. IEEE J Sel Areas Commun, 38(8):1719-1734. ![]() [16]Sun YF, An K, Luo JS, et al., 2022a. Outage constrained robust beamforming optimization for multiuser IRS-assisted anti-jamming communications with incomplete information. IEEE Int Things J, 9(15):13298-13314. ![]() [17]Sun YF, An K, Zhu YG, et al., 2022b. RIS-assisted robust hybrid beamforming against simultaneous jamming and eavesdropping attacks. IEEE Trans Wirel Commun, 21(11):9212-9231. ![]() [18]Sun YF, An K, Li C, et al., 2023. Joint transmissive and reflective RIS-aided secure MIMO systems design under spatially-correlated angular uncertainty and coupled PSEs. IEEE Trans Inform Forens Secur, 18:3606-3621. ![]() [19]Wei L, Huang CW, Alexandropoulos GC, et al., 2021. Channel estimation for RIS-empowered multi-user MISO wireless communications. IEEE Trans Commun, 69(6):4144-4157. ![]() [20]Yan SH, Yang N, Land I, et al., 2018. Three artificial-noise-aided secure transmission schemes in wiretap channels. IEEE Trans Veh Technol, 67(4):3669-3673. ![]() [21]Zhang Z, Liu YW, Wang ZL, et al., 2024. Physical layer security in near-field communications. IEEE Trans Veh Technol, 73(7):10761-10766. ![]() [22]Zhao YJ, 2023. Reconfigurable intelligent surfaces for 6G: applications, challenges, and solutions. Front Inform Technol Electron Eng, 24(12):1669-1688. ![]() [23]Zhou G, Pan CH, Ren H, et al., 2020. Robust beamforming design for intelligent reflecting surface aided MISO communication systems. IEEE Wirel Commun Lett, 9(10):1658-1662. ![]() [24]Zhou G, Pan CH, Ren H, et al., 2021. Secure wireless communication in RIS-aided MISO system with hardware impairments. IEEE Wirel Commun Lett, 10(6):1309-1313. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>