CLC number: TM13;O441.1
On-line Access: 2025-07-02
Received: 2024-07-21
Revision Accepted: 2025-07-02
Crosschecked: 2024-10-10
Cited: 0
Clicked: 530
Citations: Bibtex RefMan EndNote GB/T7714
Yu GUAN, Xiaoyu JIANG, Yanpeng ZHENG, Zhaolin JIANG. An optimized formula for the two-point resistance of a cobweb resistance network and its potential application[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400613 @article{title="An optimized formula for the two-point resistance of a cobweb resistance network and its potential application", %0 Journal Article TY - JOUR
蛛网电阻网络两点电阻的优化公式及其势的应用1临沂大学信息科学与工程学院,中国临沂市,276000 2临沂大学自动化与电气工程学院,中国临沂市,276000 2临沂大学数学与统计学院,中国临沂市,276000 摘要:近年来,电阻网络的探索和应用范围显著扩大,求解电阻网络两点间的等效电阻一直是一个重要课题。本文重点优化了具有2r边界条件的m×n蛛网电阻网络的两点电阻计算公式。为提高两点间等效电阻的计算效率,利用切比雪夫多项式的最优逼近特性,结合双曲函数对公式进行优化,并简化推导过程。讨论了几种特殊情况下的等效电阻公式,并比较了优化前后等效电阻公式的计算效率。最后,通过势公式进行路径规划的创新尝试,提出一种基于蛛网势函数的启发式算法,用于机器人在有障碍物的蛛网环境中的路径规划。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Asad JH, 2013a. Exact evaluation of the resistance in an infinite face-centered cubic network. J Stat Phys, 150(6):1177-1182. ![]() [2]Asad JH, 2013b. Infinite simple 3D cubic network of identical capacitors. Mod Phys Lett B, 27(15): 1350112. ![]() [3]Asad JH, Diab AA, Hijjawi RS, et al., 2013. Infinite face-centered-cubic network of identical resistors: application to lattice Green’s function. Eur Phys J Plus, 128(1):2. ![]() [4]Chen JQ, Ji WY, Tan ZZ, 2024. Electrical properties of a 2 × n non-regular hammock network. Indian J Phys, 98(8):2851-2860. ![]() [5]Cserti J, Dávid G, Piróth A, 2002. Perturbation of infinite networks of resistors. Am J Phys, 70(2):153-159. ![]() [6]Cserti J, Széchenyi G, Dávid G, 2011. Uniform tiling with electrical resistors. J Phys A Math Theor, 44(21): 215201. ![]() [7]Essam JW, Wu FY, 2009. The exact evaluation of the corner-to-corner resistance of an M × N resistor network: asymptotic expansion. J Phys A Math Theor, 42(2): 025205. ![]() [8]Essam JW, Tan ZZ, Wu FY, 2014. Resistance between two nodes in general position on an m × n fan network. Phys Rev E, 90(3): 032130. ![]() [9]Essam JW, Izmailyan NS, Kenna R, et al., 2015. Comparison of methods to determine point-to-point resistance in nearly rectangular networks with application to a ‘hammock’ network. R Soc Open Sci, 2(4): 140420. ![]() [10]Ferri G, Antonini G, 2007. Ladder-network-based model for interconnects and transmission lines time delay and cutoff frequency determination. J Circ Syst Comp, 16(4):489-505. ![]() [11]Fu YR, Jiang XY, Jiang ZL, et al., 2020a. Inverses and eigenpairs of tridiagonal Toeplitz matrix with opposite-bordered rows. J Appl Anal Comput, 10(4):1599-1613. ![]() [12]Fu YR, Jiang XY, Jiang ZL, et al., 2020b. Properties of a class of perturbed Toeplitz periodic tridiagonal matrices. Comput Appl Math, 39(3):146. ![]() [13]Giordano S, 2007. Two-dimensional disordered lattice networks with substrate. Phys A, 375(2):726-740. ![]() [14]Guttmann AJ, 2010. Lattice Green’s functions in all dimensions. J Phys A Math Theor, 43(30): 305205. ![]() [15]Hadad Y, Soric JC, Khanikaev AB, et al., 2018. Self-induced topological protection in nonlinear circuit arrays. Nat Electron, 1(3):178-182. ![]() [16]Hijjawi RS, Asad JH, Sakaji AJ, et al., 2008. Infinite simple 3D cubic lattice of identical resistors (two missing bonds). Eur Phys J Appl Phys, 41(2):111-114. ![]() [17]Hu Q, Zheng B, 2023. An efficient Takagi–Sugeno fuzzy zeroing neural network for solving time-varying Sylvester equation. IEEE Trans Fuzzy Syst, 31(7):2401-2411. ![]() [18]Izmailian NS, Huang MC, 2010. Asymptotic expansion for the resistance between two maximally separated nodes on an M by N resistor network. Phys Rev E, 82(1): 011125. ![]() [19]Izmailian NS, Kenna R, 2014. A generalised formulation of the Laplacian approach to resistor networks. J Stat Mech Theory Exp, 9: P09016. ![]() [20]Izmailian NS, Kenna R, 2015. The two-point resistance of fan networks. Chin J Phys, 53(1):126-136. ![]() [21]Izmailian NS, Kenna R, Wu FY, 2014. The two-point resistance of a resistor network: a new formulation and application to the cobweb network. J Phys A Math Theor, 47(3): 035003. ![]() [22]Ji YX, Ni LT, Zhao C, et al., 2023. Tripfield: a 3D potential field model and its applications to local path planning of autonomous vehicles. IEEE Trans Intell Transp Syst, 24(3):3541-3554. ![]() [23]Jiang XY, Zhang GJ, Zheng YP, et al., 2024. Explicit potential function and fast algorithm for computing potentials in α × β conic surface resistor network. Expert Syst Appl, 238: 122157. ![]() [24]Jiang ZL, Wang WP, Zheng YP, et al., 2019. Interesting explicit expressions of determinants and inverse matrices for Foeplitz and Loeplitz matrices. Mathematics, 7(10):939. ![]() [25]Jiang ZL, Zhou YF, Jiang XY, et al., 2023. Analytical potential formulae and fast algorithm for a horn torus resistor network. Phys Rev E, 107(4): 044123. ![]() [26]Jin L, Qi YM, Luo X, et al., 2022a. Distributed competition of multi-robot coordination under variable and switching topologies. IEEE Trans Autom Sci Eng, 19(4):3575-3586. ![]() [27]Jin L, Zheng X, Luo X, 2022b. Neural dynamics for distributed collaborative control of manipulators with time delays. IEEE/CAA J Autom Sin, 9(5):854-863. ![]() [28]Kirchhoff G, 1847. Ueber die auflösung der gleichungen, auf welche man bei der untersuchung der linearen vertheilung galvanischer ströme geführt wird. Ann Phys, 148(12):497-508 (in German). ![]() [29]Klein DJ, 2010. Centrality measure in graphs. J Math Chem, 47(4):1209-1223. ![]() [30]Klein DJ, Randić M, 1993. Resistance distance. J Math Chem, 12(1):81-95. ![]() [31]Kook W, 2011. Combinatorial Green’s function of a graph and applications to networks. Adv Appl Math, 46(1-4):417-423. ![]() [32]Kulathunga G, 2022. A reinforcement learning based path planning approach in 3D environment. Proc Comput Sci, 212:152-160. ![]() [33]Liu YJ, Meirer F, Krest CM, et al., 2016. Relating structure and composition with accessibility of a single catalyst particle using correlative 3-dimensional micro-spectroscopy. Nat Commun, 7(1):12634. ![]() [34]Luo XL, Tan ZZ, 2023. Fractional circuit network theory with n-V-structure. Phys Scr, 98(4): 045224. ![]() [35]Mahulea C, Kloetzer M, González R, 2020. Path Planning of Cooperative Mobile Robots Using Discrete Event Models. Wiley-IEEE Press, Piscataway, USA. ![]() [36]Mason JC, Handscomb DC, 2002. Chebyshev Polynomials. Chapman and Hall/CRC, New York, USA, p.360. ![]() [37]Mazaheri H, Goli S, Nourollah A, 2024. Path planning in three-dimensional space based on butterfly optimization algorithm. Sci Rep, 14(1):2332. ![]() [38]Meng QY, Jiang XY, Jiang ZL, 2021. Interesting determinants and inverses of skew Loeplitz and Foeplitz matrices. J Appl Anal Comput, 11(6):2947-2958. ![]() [39]Meng QY, Zheng YP, Jiang ZL, 2022a. Determinants and inverses of weighted Loeplitz and weighted Foeplitz matrices and their applications in data encryption. J Appl Math Comput, 68(6):3999-4015. ![]() [40]Meng QY, Zheng YP, Jiang ZL, 2022b. Exact determinants and inverses of (2,3,3)-Loeplitz and (2,3,3)-Foeplitz matrices. Comp Appl math, 41(1):35. ![]() [41]Meng X, Jiang XY, Zheng YP, et al., 2024. A novel formula for representing the equivalent resistance of the m × n cylindrical resistor network. Sci Rep, 14:21254. ![]() [42]Owaidat MQ, Hijjawi RS, Khalifeh JM, 2012. Network with two extra interstitial resistors. Int J Theor Phys, 51(10):3152-3159. ![]() [43]Pan ZH, Zhang CX, Xia YQ, et al., 2022. An improved artificial potential field method for path planning and formation control of the multi-UAV systems. IEEE Trans Circ Syst II Express Briefs, 69(3):1129-1133. ![]() [44]Pennetta C, Alfinito E, Reggiani L, et al., 2004. Biased resistor network model for electromigration failure and related phenomena in metallic lines. Phys Rev B, 70(17): 174305. ![]() [45]Rhazaoui K, Cai Q, Adjiman CS, et al., 2013. Towards the 3D modeling of the effective conductivity of solid oxide fuel cell electrodes: I. model development. Chem Eng Sci, 99:161-170. ![]() [46]Shi Y, Jin L, Li S, et al., 2022. Novel discrete-time recurrent neural networks handling discrete-form time-variant multi-augmented Sylvester matrix problems and manipulator application. IEEE Trans Neur Netw Learn Syst, 33(2):587-599. ![]() [47]Sun ZB, Wang G, Jin L, et al., 2022. Noise-suppressing zeroing neural network for online solving time-varying matrix square roots problems: a control-theoretic approach. Expert Syst Appl, 192: 116272. ![]() [48]Tan ZZ, 2017. Recursion-transform method and potential formulae of the m × n cobweb and fan networks. Chin Phys B, 26(9): 090503. ![]() [49]Tan ZZ, 2022. Resistance theory for two classes of n-periodic networks. Eur Phys J Plus, 137(5):546. ![]() [50]Tan ZZ, 2023a. Electrical property of an m × n apple surface network. Results Phys, 47: 106361. ![]() [51]Tan ZZ, 2023b. Theory of an m × n apple surface network with special boundary. Commun Theor Phys, 75(6): 065701. ![]() [52]Tan ZZ, Fang JH, 2015. Two-point resistance of a cobweb network with a 2r boundary. Commun Theor Phys, 63(1):36. ![]() [53]Tan ZZ, Tan Z, 2020a. The basic principle of m × n resistor networks. Commun Theor Phys, 72(5): 055001. ![]() [54]Tan ZZ, Tan Z, 2020b. Electrical properties of m × n cylindrical network. Chin Phys B, 29(8): 080503. ![]() [55]Tan ZZ, Tan Z, 2020c. Electrical properties of an m × n rectangular network. Phys Scr, 95(3): 035226. ![]() [56]Tan ZZ, Zhou L, Yang JH, 2013. The equivalent resistance of a 3 × n cobweb network and its conjecture of an m × n cobweb network. J Phys A Math Theor, 46(19): 195202. ![]() [57]Tzeng WJ, Wu FY, 2006. Theory of impedance networks: the two-point impedance and LC resonances. J Phys A Math Gen, 39(27):8579. ![]() [58]Udrea G, 1996. A note on the sequence (Wn)n≥0 of A.F. Horadam. Port Math, 53(2):143-155. ![]() [59]Uğur A, 2008. Path planning on a cuboid using genetic algorithms. Inform Sci, 178(16):3275-3287. ![]() [60]Wang JJ, Zheng YP, Jiang ZL, 2023. Norm equalities and inequalities for tridiagonal perturbed Toeplitz operator matrices. J Appl Anal Comput, 13(2):671-683. ![]() [61]Wang R, Jiang XY, Zheng YP, et al., 2024. New equivalent resistance formula of m × n rectangular resistor network represented by Chebyshev polynomials. Sci Rep, 14:29461. ![]() [62]Wang XZ, Che ML, Wei YM, 2017. Complex-valued neural networks for the Takagi vector of complex symmetric matrices. Neurocomputing, 223:77-85. ![]() [63]Wei YL, Jiang XY, Jiang ZL, et al., 2019a. Determinants and inverses of perturbed periodic tridiagonal Toeplitz matrices. Adv Differ Equ, 2019(1):410. ![]() [64]Wei YL, Zheng YP, Jiang ZL, et al., 2019b. A study of determinants and inverses for periodic tridiagonal Toeplitz matrices with perturbed corners involving Mersenne numbers. Mathematics, 7(10):893. ![]() [65]Wei YL, Jiang XY, Jiang ZL, et al., 2020. On inverses and eigenpairs of periodic tridiagonal Toeplitz matrices with perturbed corners. J Appl Anal Comput, 10(1):178-191. ![]() [66]Wei YL, Zheng YP, Jiang ZL, et al., 2022. The inverses and eigenpairs of tridiagonal Toeplitz matrices with perturbed rows. J Appl Math Comput, 68(1):623-636. ![]() [67]Wu FY, 2004. Theory of resistor networks: the two-point resistance. J Phys A Math Gen, 37(26):6653-6673. ![]() [68]Wu WQ, Zhang YN, 2024. Zeroing neural network with coefficient functions and adjustable parameters for solving time-variant Sylvester equation. IEEE Trans Neur Netw Learn Syst, 35(5):6757-6766. ![]() [69]Xu GY, Eleftheriades GV, Hum SV, 2021. Analysis and design of general printed circuit board metagratings with an equivalent circuit model approach. IEEE Trans Antenn Propagat, 69(8):4657-4669. ![]() [70]Xue JM, Li J, Chen JY, et al., 2021. Wall-climbing robot path planning for cylindrical storage tank inspection based on modified A-star algorithm. IEEE Far East NDT New Technology & Application Forum, p.191-195. ![]() [71]Yang YJ, Klein DJ, 2013. A recursion formula for resistance distances and its applications. Discret Appl Math, 161(16-17):2702-2715. ![]() [72]Yu ZH, Yuan J, Li YS, et al., 2023. A path planning algorithm for mobile robot based on water flow potential field method and beetle antennae search algorithm. Comput Electr Eng, 109: 108730. ![]() [73]Zhang D, Yang B, Tan JP, et al., 2021. Impact damage localization and mode identification of CFRPs panels using an electric resistance change method. Compos Struct, 276: 114587. ![]() [74]Zhao WJ, Zheng YP, Jiang XY, et al., 2023. Two optimized novel potential formulas and numerical algorithms for m × n cobweb and fan resistor networks. Sci Rep, 13(1):12417. ![]() [75]Zhou YF, Zheng YP, Jiang XY, et al., 2022. Fast algorithm and new potential formula represented by Chebyshev polynomials for an m × n globe network. Sci Rep, 12(1):21260. ![]() [76]Zhou YF, Jiang XY, Zheng YP, et al., 2023. Exact novel formulas and fast algorithm of potential for a hammock resistor network. AIP Adv, 13(9): 095127. ![]() [77]Zhu ZX, Yin Y, Lü HG, 2023. Automatic collision avoidance algorithm based on route-plan-guided artificial potential field method. Ocean Eng, 271: 113737. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>