CLC number:
On-line Access: 2025-06-04
Received: 2024-08-13
Revision Accepted: 2024-12-22
Crosschecked: 2025-09-04
Cited: 0
Clicked: 940
Yuqi XIA, Xiuping LI, Genqiang KOU, Wenyu ZHAO, Jie ZHANG, Muhammad ISHFAQ, Zihang QI. Three-dimensional-printed low-sidelobe dual-band dual-polarized antenna array for Ku-bandsatellite communications[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400709 @article{title="Three-dimensional-printed low-sidelobe dual-band dual-polarized antenna array for Ku-bandsatellite communications", %0 Journal Article TY - JOUR
用于Ku波段卫星通信的3D打印低旁瓣双频双极化阵列天线1信息光子学与光通信全国重点实验室,中国北京市,100876 2泛网无线通信教育部重点实验室,中国北京市,100876 3安全生产智能监控北京市重点实验室,中国北京市,100876 4北京邮电大学电子工程学院,中国北京市,100876 摘要:介绍了一种用于Ku波段卫星通信(SATCOM)的3D打印双频双极化间隙波导(GWG)缝隙阵列天线。两个堆叠的GWG通过正交槽分别激发腔内的准TE420和准TE240模式。基于脊间隙波导(RGW),提出一种具有大功率分配比的不等分功率分配器。实现了双极化功率锥形分布馈电网络,抑制了旁瓣电平(SLL)。天线通过直接金属激光烧结(DMLS)分层打印,整个天线通过螺钉组装在一起。测量的阻抗带宽覆盖了Ku波段SATCOM所需的发射频段(Tx,从14.0到14.5 GHz)和接收频段(Rx,从12.25到12.75 GHz)。测量结果显示,最大增益达到25.6 dBi,双频段的辐射效率超过72%。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Akbari M, Farahbakhsh A, Sebak AR, 2019. Ridge gap waveguide multilevel sequential feeding network for high-gain circularly polarized array antenna. IEEE Trans Antenn Propag, 67(1):251-259. ![]() [2]Chen M, Fang XC, Wang W, et al., 2020. Dual-band dual-polarized waveguide slot antenna for SAR applications. IEEE Antenn Wirel Propag Lett, 19(10):1719-1723. ![]() [3]Cheng YJ, Tan FY, Zhou MM, et al., 2020. Dual-polarized wideband plate array antenna with high polarization isolation and low cross polarization for D-band high-capacity wireless application. IEEE Antenn Wirel Propag Lett, 19(12):2023-2027. ![]() [4]Dimitrov KC, Lee Y, Min BW, et al., 2020. Circularly polarized T-shaped slot waveguide array antenna for satellite communications. IEEE Antenn Wirel Propag Lett, 19(2):317-321. ![]() [5]Fenech H, Amos S, Tomatis A, et al., 2015. High throughput satellite systems: an analytical approach. IEEE Trans Aerosp Electr Syst, 51(1):192-202. ![]() [6]Ferrando-Rocher M, Herranz-Herruzo JI, Valero-Nogueira A, et al., 2018. Single-layer circularly-polarized Ka-band antenna using gap waveguide technology. IEEE Trans Antenn Propag, 66(8):3837-3845. ![]() [7]Ferrando-Rocher M, Herranz-Herruzo JI, Valero-Nogueira A, et al., 2019a. Full-metal K-Ka dual-band shared-aperture array antenna fed by combined ridge-groove gap waveguide. IEEE Antenn Wirel Propag Lett, 18(7):1463-1467. ![]() [8]Ferrando-Rocher M, Herranz-Herruzo JI, Valero-Nogueira A, et al., 2019b. 8×8 Ka-band dual-polarized array antenna based on gap waveguide technology. IEEE Trans Antenn Propag, 67(7):4579-4588. ![]() [9]Garcia-Marin E, Sanchez-Olivares P, Masa-Campos JL, et al., 2021. Dual circularly polarized array antenna based on corporate feeding network in square waveguide technology. IEEE Trans Antenn Propag, 69(3):1763-1768. ![]() [10]Huang GL, Zhou SG, Chio TH, et al., 2015. A low profile and low sidelobe wideband slot antenna array feb by an amplitude-tapering waveguide feed-network. IEEE Trans Antenn Propag, 63(1):419-423. ![]() [11]Jiang X, Jia FX, Cao Y, et al., 2019. Ka-band 8×8 low-sidelobe slot antenna array using a 1-to-64 high-efficiency network designed by new printed RGW technology. IEEE Antenn Wirel Propag Lett, 18(6):1248-1252. ![]() [12]Liu PY, Pedersen GF, Zhang S, 2022. Wideband low-sidelobe slot array antenna with compact tapering feeding network for E-band wireless communications. IEEE Trans Antenn Propag, 70(4):2676-2685. ![]() [13]Lu YL, Shen SH, You Y, et al., 2023. Wideband dual linearly polarized hollow-waveguide septum antenna array for Ku-band satellite communications. IEEE Trans Antenn Propag, 71(3):2433-2442. ![]() [14]Miura Y, Hirokawa J, Ando M, et al., 2011. Double-layer full-corporate-feed hollow-waveguide slot array antenna in the 60-GHz band. IEEE Trans Antenn Propag, 59(8):2844-2851. ![]() [15]Ran JQ, Jin C, Zhang PY, et al., 2022. High-gain and low-loss dual-polarized antenna array with reduced sidelobe level based on gap waveguide at 28 GHz. IEEE Antenn Wirel Propag Lett, 21(5):1022-1026. ![]() [16]Sun FQ, Li YJ, Wang JH, et al., 2022. A millimeter-wave wideband dual-polarized antenna array with 3-D-printed air-filled differential feeding cavities. IEEE Trans Antenn Propag, 70(2):1020-1032. ![]() [17]Yang QL, Gao S, Luo Q, et al., 2021. A dual-polarized planar antenna array differentially-fed by orthomode transducer. IEEE Trans Antenn Propag, 69(5):2637-2647. ![]() [18]You S, Ahn SC, Kim YS, et al., 2022. Asymmetric iris structures for dual-polarization waveguide slot arrays for E-band wireless backhaul systems. IEEE Trans Antenn Propag, 70(4):2633-2644. ![]() [19]Yu L, Yang X, Zhang K, et al., 2023. Millimeter-wave dual-band dual-polarized shared-aperture antenna for satellite communication applications. IEEE MTT-S Int Wireless Symp, p.1-3. ![]() [20]Zaman AU, Kildal PS, 2014. Wide-band slot antenna arrays with single-layer corporate-feed network in ridge gap waveguide technology. IEEE Trans Antenn Propag, 62(6):2992-3001. ![]() [21]Zhang J, Li XP, Qi ZH, et al., 2022. Dual-band dual-polarization horn antenna array based on orthomode transducers with high isolation for satellite communication. IEEE Trans Antenn Propag, 70(10):9247-9259. ![]() [22]Zhang JJ, Zhao DX, You XH, 2022. Analysis and design of a CMOS LNA with transformer-based integrated notch filter for Ku-band satellite communications. IEEE Trans Microw Theory Tech, 70(1):790-800. ![]() [23]Zhao X, Tian BN, Yeo SP, et al., 2017. Low-profile broadband dual-polarized integrated patch subarray for X-band synthetic aperture radar payload on small satellite. IEEE Antenn Wirel Propag Lett, 16:1735-1738. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>