CLC number: TN918.4
On-line Access: 2025-06-04
Received: 2024-09-13
Revision Accepted: 2024-12-17
Crosschecked: 2025-09-04
Cited: 0
Clicked: 823
Zhenling LI, Panpan XU, Qiangqiang GAO, Chunguo LI, Weijie TAN. Reconfigurable intelligent surface-aided secret key generation using an autoencoder and K-means quantization[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400799 @article{title="Reconfigurable intelligent surface-aided secret key generation using an autoencoder and K-means quantization", %0 Journal Article TY - JOUR
基于自编码器与K均值量化的可重构智能表面辅助密钥生成1贵州大学数学与统计学院,中国贵阳市,550025 2贵州大学公共大数据国家重点实验室,中国贵阳市,550025 3贵州大学计算机科学与技术学院,中国贵阳市,550025 4东南大学信息科学与工程学院,中国南京市,212013 摘要:在准静态无线信道场景下,物理层密钥的生成面临着信道特性不变带来的挑战,导致高密钥不一致率(KDR)和低密钥生成率(KGR)。为解决这些问题,提出一种新颖的可重构智能表面(RIS)辅助密钥生成方法,该方法结合了自编码器和K均值量化算法。本文提出的方法利用信道状态信息进行信道估计,动态调整RIS的反射系数,以创建快速波动的信道。该策略从动态信道参数中提取信息,从而增强信道随机性。通过集成自编码器与K均值聚类量化算法,该方法高效地从复杂、模糊且高维的信道参数中提取随机比特,显著降低了KDR。仿真实验表明,在不同信噪比条件下,该方法在KDR和KGR方面均表现出色。此外,用美国国家标准与技术研究院测试套件验证了该方法所生成密钥的随机性。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Aldaghri N, Mahdavifar H, 2020. Physical layer secret key generation in static environments. IEEE Trans Inform Forens Sec, 15:2692-2705. ![]() [2]Csiszar I, Narayan P, 2000. Common randomness and secret key generation with a helper. IEEE Trans Inform Theory, 46(2):344-366. ![]() [3]Cui ZL, Liu J, Yang G, 2024. XL-RIS empowered near-field physical layer security against jamming and eavesdropping attacks. Front Inform Technol Electron Eng, 25(12):1750-1758. ![]() [4]Han QQ, Liu JM, Shen ZW, et al., 2020. Vector partitioning quantization utilizing K-means clustering for physical layer secret key generation. Inform Sci, 512:137-160. ![]() [5]Hershey JE, Hassan AA, Yarlagadda R, 1995. Unconventional cryptographic keying variable management. IEEE Trans Commun, 43(1):3-6. ![]() [6]Ji ZJ, Yeoh PL, Zhang DY, et al., 2021. Secret key generation for intelligent reflection surface assisted wireless communication networks. IEEE Trans Veh Technol, 70(1):1030-1034. ![]() [7]Juels A, Wattenberg M, 1999. A fuzzy commitment scheme. Proc 6th ACM Conf on Computer and Communications Security, p.28-36. ![]() [8]Li GY, Hu AQ, Zhang JQ, et al., 2017. Security analysis of a novel artificial randomness approach for fast key generation. Proc IEEE Conf on Global Communications, p.1-6. ![]() [9]Liu YP, Draper SC, Sayeed AM, 2012. Exploiting channel diversity in secret key generation from multipath fading randomness. IEEE Trans Inform Forens Sec, 7(5):1484-1497. ![]() [10]Lou YM, Jin L, Zhong Z, et al., 2017. Secret key generation scheme based on MIMO received signal spaces. Sci Sin Inform, 47(3):362-373. ![]() [11]Lu XJ, Lei J, Shi YX, et al., 2021. Intelligent reflection surface assisted secret key generation. IEEE Signal Process Lett, 28:1036-1040. ![]() [12]Luo HF, Garg N, Ratnarajah T, 2023. A channel frequency response-based secret key generation scheme in in-band full-duplex MIMO-OFDM systems. IEEE J Sel Areas Commun, 41(9):2951-2965. ![]() [13]Mathur S, Trappe W, Mandayam N, et al., 2008. Radio-telepathy: extracting a secret key from an unauthenticated wireless channel. Proc 14th ACM Int Conf on Mobile Computing and Networking, p.128-139. ![]() [14]Rukhin A, Soto J, Nechvatal J, et al., 2010. A statistical test suite for random and pseudorandom number generators for cryptographic applications (NIST SP 800-22 Rev. 1a). NIST, Gaithersburg, USA. ![]() [15]Shannon CE, 1949. Communication theory of secrecy systems. Bell Syst Tech J, 28(4):656-715. ![]() [16]Shimizu T, Iwai H, Sasaoka H, 2011. Physical-layer secret key agreement in two-way wireless relaying systems. IEEE Trans Inform Forens Sec, 6(3):650-660. ![]() [17]Shlezinger N, Alexandropoulos GC, Imani MF, et al., 2021. Dynamic metasurface antennas for 6G extreme massive MIMO communications. IEEE Wirel Commun, 28(2):106-113. ![]() [18]Wan Z, Yan MY, Huang KZ, et al., 2023. Pattern-reconfigurable antenna-assisted secret key generation from multipath fading channels. Front Inform Technol Electron Eng, 24(12):1803-1814. ![]() [19]Wang XQ, Zhu FH, Zhou QY, et al., 2024a. Energy-efficient beamforming for RISs-aided communications: gradient based meta learning. Proc IEEE Int Conf on Communications, p.3464-3469. ![]() [20]Wang XQ, Zhu FH, Huang CW, et al., 2024b. Robust beamforming with gradient-based liquid neural network. IEEE Wirel Commun Lett, 13(11):3020-3024. ![]() [21]Wu QQ, Zhang SW, Zheng BX, et al., 2021. Intelligent reflection surface-aided wireless communications: a tutorial. IEEE Trans Commun, 69(5):3313-3351. ![]() [22]Wu XH, Peng YX, Hu CJ, et al., 2013. A secret key generation method based on CSI in OFDM-FDD system. Proc IEEE Conf on Globecom Workshops, p.1297-1302. ![]() [23]Wyner AD, 1975. The wire-tap channel. Bell Syst Tech J, 54(8):1355-1387. ![]() [24]Ye HY, Gao FF, Qian J, et al., 2020. Deep learning-based denoise network for CSI feedback in FDD massive MIMO systems. IEEE Commun Lett, 24(8):1742-1746. ![]() [25]Yu P, Zhou FQ, Zhang X, et al., 2020. Deep learning-based resource allocation for 5G broadband TV service. IEEE Trans Broadcast, 66(4):800-813. ![]() [26]Zeng K, 2015. Physical layer key generation in wireless networks: challenges and opportunities. IEEE Commun Mag, 53(6):33-39. ![]() [27]Zhou G, Pan CH, Ren H, et al., 2020. Robust beamforming design for intelligent reflection surface aided MISO communication systems. IEEE Wirel Commun Lett, 9(10):1658-1662. ![]() [28]Zhu FH, Wang XQ, Huang CW, et al., 2024. Robust beamforming for RIS-aided communications: gradient-based manifold meta learning. IEEE Trans Wirel Commun, 23(11):15945-15956. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>