CLC number: TN92
On-line Access: 2025-06-04
Received: 2024-09-22
Revision Accepted: 2024-11-18
Crosschecked: 2025-09-04
Cited: 0
Clicked: 802
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0003-2439-0923
Zhaohong LV, Zhenkai ZHANG, Boon-Chong SEET, Yi YANG. Joint target tracking using an autonomous underwater vehicle and underwater sensor networks for underwater applications[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400869 @article{title="Joint target tracking using an autonomous underwater vehicle and underwater sensor networks for underwater applications", %0 Journal Article TY - JOUR
面向水下应用的水下自主航行器与传感器网络联合目标跟踪方法1江苏科技大学海洋学院,中国镇江市,212003 2奥克兰理工大学电气与电子工程系,新西兰奥克兰,1010 3武汉船舶通信研究所,中国武汉市,430223 摘要:由于受到环境限制,水下传感器网络(USNs)能源资源有限,因此提高其能源利用效率至关重要。为此,本文采用搭载较强计算能力的自主水下航行器(AUV)来处理测量数据,并利用AUV的机动性优化USN拓扑,从而提高跟踪精度。首先,针对水声信号传输时延,提出一种结合时间延迟估计的集中式扩展卡尔曼滤波器(TD-CEKF)算法。其次,建立AUV位置与USN拓扑结构之间的数学关系,并基于此构建优化目标。最后,引入罚函数对目标函数进行无约束化处理,并通过梯度下降法搜索最佳AUV位置以优化USN拓扑结构。仿真结果表明,所提算法能有效克服传输延迟对目标跟踪的影响,提高跟踪性能。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Alostad JM, 2020. Reliability in IoUT enabled underwater sensor networks using dynamic adaptive routing protocol. Int J Int Manuf Serv, 7(1-2):115-129. ![]() [2]Chen B, Hu JP, Zhao YY, et al., 2022a. Finite-time observer based tracking control of uncertain heterogeneous underwater vehicles using adaptive sliding mode approach. Neurocomputing, 481:322-332. ![]() [3]Chen B, Hu JP, Zhao YY, et al., 2022b. Finite-time velocity-free rendezvous control of multiple AUV systems with intermittent communication. IEEE Trans Syst Man Cybern Syst, 52(10):6618-6629. ![]() [4]Jahanbakht M, Xiang W, Hanzo L, et al., 2021. Internet of Underwater Things and big marine data analytics—a comprehensive survey. IEEE Commun Surv Tutor, 23(2):904-956. ![]() [5]Li YD, Zhuang HC, Xu L, et al., 2025. Hierarchical detection and tracking for moving targets in underwater wireless sensor networks. Digit Commun Netw, 11(2):556-562. ![]() [6]Luo JH, Han Y, 2019. A node depth adjustment method with computation-efficiency based on performance bound for range-only target tracking in UWSNs. Signal Process, 158:79-90. ![]() [7]Luo JH, Han Y, He XT, 2019. Optimal bit allocation for maneuvering target tracking in UWSNs with additive and multiplicative noise. Signal Process, 164:125-135. ![]() [8]Mohsan SAH, Mazinani A, Othman NQH, et al., 2022. Towards the internet of underwater things: a comprehensive survey. Earth Sci Inform, 15(2):735-764. ![]() [9]Moreno-Salinas D, Pascoal A, Aranda J, 2013. Sensor networks for optimal target localization with bearings-only measurements in constrained three-dimensional scenarios. Sensors, 13(8):10386-10417. ![]() [10]Shi YC, Jiu B, Yan JK, et al., 2021. Data-driven simultaneous multibeam power allocation: when multiple targets tracking meets deep reinforcement learning. IEEE Syst J, 15(1):1264-1274. ![]() [11]Song SS, Liu J, Guo JN, et al., 2023. Efficient data collection scheme for multi-modal underwater sensor networks based on deep reinforcement learning. IEEE Trans Veh Technol, 72(5):6558-6570. ![]() [12]Su J, Li YA, Ali W, 2020. Underwater angle-only tracking with propagation delay and time-offset between observers. Signal Process, 176:107581. ![]() [13]Tang MY, Liu MQ, Zhang SL, et al., 2024. Distributed target tracking in UWSNs under stochastic node communication scheme. IEEE Sens J, 24(3):3912-3926. ![]() [14]Teimouri M, Hoseini SM, 2024. Observed Fisher information for radar clutter modeled with sub-Gaussian α-stable distribution. Digit Signal Process, 146:104382. ![]() [15]Tian SK, Zhang ZK, 2021. Tracking energy control algorithm based on underwater sensor networks assisted by AUV. Int Conf on Autonomous Unmanned Systems, p.379-388. ![]() [16]Tian SK, Zhang ZK, 2022. A node selection algorithm based on multi-objective optimization under position floating. IEEE Access, 10:41863-41873. ![]() [17]Wang LL, Xu XY, An SM, et al., 2024. CodeUNet: autonomous underwater vehicle real visual enhancement via underwater codebook priors. ISPRS J Photogramm Remote Sens, 215:99-111. ![]() [18]Xu B, Guo Y, 2022. A novel DVL calibration method based on robust invariant extended Kalman filter. IEEE Trans Veh Technol, 71(9):9422-9434. ![]() [19]Xu B, Wang XY, Zhang J, et al., 2022. A novel adaptive filtering for cooperative localization under compass failure and non-Gaussian noise. IEEE Trans Veh Technol, 71(4):3737-3749. ![]() [20]Yuan Y, Liu XY, Li WJ, et al., 2024. Decentralized resource allocation for multi-radar systems based on quality of service framework. IEEE Trans Signal Process, 72:1189-1204. ![]() [21]Zhang D, Liu MQ, Zhang SL, et al., 2018. Mutual-information based weighted fusion for target tracking in underwater wireless sensor networks. Front Inform Technol Electron Eng, 19(4):544-556. ![]() [22]Zhang D, Liu MQ, Zhang SL, et al., 2019. Non-myopic energy allocation for target tracking in energy harvesting UWSNs. IEEE Sens J, 19(10):3772-3783. ![]() [23]Zhang JX, Liu MQ, Zhang SL, et al., 2022. Robust global route planning for an autonomous underwater vehicle in a stochastic environment. Front Inform Technol Electron Eng, 23(11):1658-1672. ![]() [24]Zhang Q, Liu MQ, Zhang SL, 2015. Node topology effect on target tracking based on UWSNs using quantized measurements. IEEE Trans Cybern, 45(10):2323-2335. ![]() [25]Zhang SL, Chen HY, Liu MQ, et al., 2017. Optimal quantization scheme for data-efficient target tracking via UWSNs using quantized measurements. Sensors, 17(11):2565. ![]() [26]Zhang ZK, Tian SK, Yang Y, 2023. Node depth adjustment based target tracking in sparse underwater sensor networks. J Mar Sci Eng, 11(2):372. ![]() [27]Zhao HY, Yan J, Luo XY, et al., 2021. Ubiquitous tracking for autonomous underwater vehicle with IoUT: a rigid-graph-based solution. IEEE Int Things J, 8(18):14094-14109. ![]() [28]Zheng LY, Liu MQ, Zhang SL, 2023. An end-to-end sensor scheduling method based on D3QN for underwater passive tracking in UWSNs. J Netw Comput Appl, 219:103730. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>