Full Text:  <1343>

CLC number: TN92

On-line Access: 2025-06-04

Received: 2024-09-22

Revision Accepted: 2024-11-18

Crosschecked: 2025-09-04

Cited: 0

Clicked: 802

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhenkai ZHANG

https://orcid.org/0000-0003-2439-0923

Zhaohong LV

https://orcid.org/0009-0001-1136-9888

Boon-Chong SEET

https://orcid.org/0000-0002-9511-7521

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Joint target tracking using an autonomous underwater vehicle and underwater sensor networks for underwater applications


Author(s):  Zhaohong LV, Zhenkai ZHANG, Boon-Chong SEET, Yi YANG

Affiliation(s):  Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212003, China; more

Corresponding email(s):  1921301805@qq.com, boon-chong.seet@aut.ac.nz, 88563379@qq.com, zhangzhenkai@just.edu.cn

Key Words:  Underwater sensor networks (USNs); Target tracking; Time delay estimation; Autonomous underwater vehicle (AUV


Share this article to: More <<< Previous Paper|Next Paper >>>

Zhaohong LV, Zhenkai ZHANG, Boon-Chong SEET, Yi YANG. Joint target tracking using an autonomous underwater vehicle and underwater sensor networks for underwater applications[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400869

@article{title="Joint target tracking using an autonomous underwater vehicle and underwater sensor networks for underwater applications",
author="Zhaohong LV, Zhenkai ZHANG, Boon-Chong SEET, Yi YANG",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.2400869"
}

%0 Journal Article
%T Joint target tracking using an autonomous underwater vehicle and underwater sensor networks for underwater applications
%A Zhaohong LV
%A Zhenkai ZHANG
%A Boon-Chong SEET
%A Yi YANG
%J Frontiers of Information Technology & Electronic Engineering
%P 1473-1485
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.2400869"

TY - JOUR
T1 - Joint target tracking using an autonomous underwater vehicle and underwater sensor networks for underwater applications
A1 - Zhaohong LV
A1 - Zhenkai ZHANG
A1 - Boon-Chong SEET
A1 - Yi YANG
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 1473
EP - 1485
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.2400869"


Abstract: 
Because underwater sensor networks (USNs) have limited energy resources due to environmental constraints, it is essential to improve energy utilization. For this purpose, an autonomous underwater vehicle (AUV) with greater onboard computation power is used to process measurement data, and the mobility of the AUV is leveraged to optimize the USN topology, enhancing tracking accuracy. First, to address the transmission delay of underwater acoustic signals, a time-delay compensated centralized extended Kalman filter (TD-CEKF) algorithm is proposed. Next, the mathematical relationship between AUV position and USN topology is established, based on which the optimization target is constructed. Subsequently, a penalty function is introduced to remove the constraints from the objective function, and the optimal AUV position is searched using the gradient descent method to optimize the USN topology. The simulation results demonstrate that the proposed algorithm can effectively overcome the influence of transmission delay on target tracking and achieve improved tracking performance.

面向水下应用的水下自主航行器与传感器网络联合目标跟踪方法

吕招洪1,张贞凯1,Boon-Chong SEET2,杨毅3
1江苏科技大学海洋学院,中国镇江市,212003
2奥克兰理工大学电气与电子工程系,新西兰奥克兰,1010
3武汉船舶通信研究所,中国武汉市,430223
摘要:由于受到环境限制,水下传感器网络(USNs)能源资源有限,因此提高其能源利用效率至关重要。为此,本文采用搭载较强计算能力的自主水下航行器(AUV)来处理测量数据,并利用AUV的机动性优化USN拓扑,从而提高跟踪精度。首先,针对水声信号传输时延,提出一种结合时间延迟估计的集中式扩展卡尔曼滤波器(TD-CEKF)算法。其次,建立AUV位置与USN拓扑结构之间的数学关系,并基于此构建优化目标。最后,引入罚函数对目标函数进行无约束化处理,并通过梯度下降法搜索最佳AUV位置以优化USN拓扑结构。仿真结果表明,所提算法能有效克服传输延迟对目标跟踪的影响,提高跟踪性能。

关键词组:水下传感网络;目标跟踪;时延估计;自主水下航行器

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alostad JM, 2020. Reliability in IoUT enabled underwater sensor networks using dynamic adaptive routing protocol. Int J Int Manuf Serv, 7(1-2):115-129.

[2]Chen B, Hu JP, Zhao YY, et al., 2022a. Finite-time observer based tracking control of uncertain heterogeneous underwater vehicles using adaptive sliding mode approach. Neurocomputing, 481:322-332.

[3]Chen B, Hu JP, Zhao YY, et al., 2022b. Finite-time velocity-free rendezvous control of multiple AUV systems with intermittent communication. IEEE Trans Syst Man Cybern Syst, 52(10):6618-6629.

[4]Jahanbakht M, Xiang W, Hanzo L, et al., 2021. Internet of Underwater Things and big marine data analytics—a comprehensive survey. IEEE Commun Surv Tutor, 23(2):‍904-956.

[5]Li YD, Zhuang HC, Xu L, et al., 2025. Hierarchical detection and tracking for moving targets in underwater wireless sensor networks. Digit Commun Netw, 11(2):556-562.

[6]Luo JH, Han Y, 2019. A node depth adjustment method with computation-efficiency based on performance bound for range-only target tracking in UWSNs. Signal Process, 158:79-90.

[7]Luo JH, Han Y, He XT, 2019. Optimal bit allocation for maneuvering target tracking in UWSNs with additive and multiplicative noise. Signal Process, 164:125-135.

[8]Mohsan SAH, Mazinani A, Othman NQH, et al., 2022. Towards the internet of underwater things: a comprehensive survey. Earth Sci Inform, 15(2):735-764.

[9]Moreno-Salinas D, Pascoal A, Aranda J, 2013. Sensor networks for optimal target localization with bearings-only measurements in constrained three-dimensional scenarios. Sensors, 13(8):10386-10417.

[10]Shi YC, Jiu B, Yan JK, et al., 2021. Data-driven simultaneous multibeam power allocation: when multiple targets tracking meets deep reinforcement learning. IEEE Syst J, 15(1):1264-1274.

[11]Song SS, Liu J, Guo JN, et al., 2023. Efficient data collection scheme for multi-modal underwater sensor networks based on deep reinforcement learning. IEEE Trans Veh Technol, 72(5):6558-6570.

[12]Su J, Li YA, Ali W, 2020. Underwater angle-only tracking with propagation delay and time-offset between observers. Signal Process, 176:107581.

[13]Tang MY, Liu MQ, Zhang SL, et al., 2024. Distributed target tracking in UWSNs under stochastic node communication scheme. IEEE Sens J, 24(3):3912-3926.

[14]Teimouri M, Hoseini SM, 2024. Observed Fisher information for radar clutter modeled with sub-Gaussian α‍-‍stable distribution. Digit Signal Process, 146:104382.

[15]Tian SK, Zhang ZK, 2021. Tracking energy control algorithm based on underwater sensor networks assisted by AUV. Int Conf on Autonomous Unmanned Systems, p.379-388.

[16]Tian SK, Zhang ZK, 2022. A node selection algorithm based on multi-objective optimization under position floating. IEEE Access, 10:41863-41873.

[17]Wang LL, Xu XY, An SM, et al., 2024. CodeUNet: autonomous underwater vehicle real visual enhancement via underwater codebook priors. ISPRS J Photogramm Remote Sens, 215:99-111.

[18]Xu B, Guo Y, 2022. A novel DVL calibration method based on robust invariant extended Kalman filter. IEEE Trans Veh Technol, 71(9):9422-9434.

[19]Xu B, Wang XY, Zhang J, et al., 2022. A novel adaptive filtering for cooperative localization under compass failure and non-Gaussian noise. IEEE Trans Veh Technol, 71(4):3737-3749.

[20]Yuan Y, Liu XY, Li WJ, et al., 2024. Decentralized resource allocation for multi-radar systems based on quality of service framework. IEEE Trans Signal Process, 72:1189-1204.

[21]Zhang D, Liu MQ, Zhang SL, et al., 2018. Mutual-information based weighted fusion for target tracking in underwater wireless sensor networks. Front Inform Technol Electron Eng, 19(4):544-556.

[22]Zhang D, Liu MQ, Zhang SL, et al., 2019. Non-myopic energy allocation for target tracking in energy harvesting UWSNs. IEEE Sens J, 19(10):3772-3783.

[23]Zhang JX, Liu MQ, Zhang SL, et al., 2022. Robust global route planning for an autonomous underwater vehicle in a stochastic environment. Front Inform Technol Electron Eng, 23(11):1658-1672.

[24]Zhang Q, Liu MQ, Zhang SL, 2015. Node topology effect on target tracking based on UWSNs using quantized measurements. IEEE Trans Cybern, 45(10):2323-2335.

[25]Zhang SL, Chen HY, Liu MQ, et al., 2017. Optimal quantization scheme for data-efficient target tracking via UWSNs using quantized measurements. Sensors, 17(11):2565.

[26]Zhang ZK, Tian SK, Yang Y, 2023. Node depth adjustment based target tracking in sparse underwater sensor networks. J Mar Sci Eng, 11(2):372.

[27]Zhao HY, Yan J, Luo XY, et al., 2021. Ubiquitous tracking for autonomous underwater vehicle with IoUT: a rigid-graph-based solution. IEEE Int Things J, 8(18):14094-14109.

[28]Zheng LY, Liu MQ, Zhang SL, 2023. An end-to-end sensor scheduling method based on D3QN for underwater passive tracking in UWSNs. J Netw Comput Appl, 219:103730.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE