Full Text:  <7176>

CLC number: O32

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-05-16

Cited: 10

Clicked: 18613

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A

Accepted manuscript available online (unedited version)


Proportional-integral-derivative control of nonlinear half-car electro-hydraulic suspension systems


Author(s):  John E. D. Ekoru, Jimoh O. Pedro

Affiliation(s):  . School of Mechanical, Aeronautical and Industrial Engineering, University of the Witwatersrand, Private Bag 03, WITS 2050, Johannesburg, South Africa

Corresponding email(s):  John.Ekoru@students.wits.ac.za

Key Words:  Force control, Proportional-integral-derivative (PID) control, Nonlinear half-car, Active vehicle suspension system (AVSS), Hydraulic actuator dynamics, Model uncertainty


Share this article to: More <<< Previous Paper|Next Paper >>>

John E. D. Ekoru, Jimoh O. Pedro. Proportional-integral-derivative control of nonlinear half-car electro-hydraulic suspension systems[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1200161

@article{title="Proportional-integral-derivative control of nonlinear half-car electro-hydraulic suspension systems",
author="John E. D. Ekoru, Jimoh O. Pedro",
journal="Journal of Zhejiang University Science A",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.A1200161"
}

%0 Journal Article
%T Proportional-integral-derivative control of nonlinear half-car electro-hydraulic suspension systems
%A John E. D. Ekoru
%A Jimoh O. Pedro
%J Journal of Zhejiang University SCIENCE A
%P 401-416
%@ 1673-565X
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.A1200161"

TY - JOUR
T1 - Proportional-integral-derivative control of nonlinear half-car electro-hydraulic suspension systems
A1 - John E. D. Ekoru
A1 - Jimoh O. Pedro
J0 - Journal of Zhejiang University Science A
SP - 401
EP - 416
%@ 1673-565X
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.A1200161"


Abstract: 
This paper presents the development of a proportional-integral-derivative (PID)-based control method for application to active vehicle suspension systems (AVSS). This method uses an inner PID hydraulic actuator force control loop, in combination with an outer PID suspension travel control loop, to control a nonlinear half-car AVSS. Robustness to model uncertainty in the form of variation in suspension damping is tested, comparing performance of the AVSS with a passive vehicle suspension system (PVSS), with similar model parameters. Spectral analysis of suspension system model output data, obtained by performing a road input disturbance frequency sweep, provides frequency response plots for both nonlinear vehicle suspension systems and time domain vehicle responses to a sinusoidal road input disturbance on a smooth road. The results show the greater robustness of the AVSS over the PVSS to parametric uncertainty in the frequency and time domains.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Akcay,H, Turkay,S, 2009, Influence of tire damping on mixed / synthesis of half-car active suspensions  Journal of Sound and Vibration, 322(1-2):15-28.


[2] Astrom,K.J, Hagglund,T, 2001, The future of PID control  Control Engineering Practice, 9(11):1163-1175.


[3] Astrom,K.J, Hagglund,T, 2004, Revisiting the Ziegler-Nichols step response method for PID control  Journal of Process Control, 14(6):635-650.


[4] Buckner,G.D, Schuetze,K.T, Beno,J.H, 2000, Active Vehicle Suspension Control Using Intelligent Feedback Linearization  Proceedings of the American Control Conference, 6():4014-4018.


[5] Cetin,S, Akkaya,A.V, 2010, Simulation and hybrid fuzzy-PID control for positioning of a hydraulic system  Nonlinear Dynamics, 61():465-476.


[6] Chantranuwathana,S, Peng,H, 2004, Adaptive robust force control for vehicle active suspension  International Journal of Adaptive Control and Signal Processing, 18(2):83-102.


[7] Chen,H, Liu,Z.Y, Sun,P.Y, 2005, Application of constrained control to active suspension systems on half-car models  Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 127(3):345-354.


[8] Chien,T.L, Chen,C.C, Chiu,H.C, Cheng,H.W, Chen,Y.C, 2008, Almost disturbance decoupling control of nonlinear MIMO uncertain system and application to half-car active suspension system  International Journal of Vehicle Design, 46(4):367-392.


[9] Dahunsi,O.A, Pedro,J.O, 2010, Neural network-based identification and approximate predictive control of a servo-hydraulic vehicle suspension system  Engineering Letters, 18(4):357-368.

[10] Dahunsi,O.A, Pedro,J.O, Nyandoro,O.T, 2009, Neural Network-based Model Predictive Control of a Servo-hydraulic Vehicle Suspension System  , ():1-6.


[11] Dahunsi,O.A, Pedro,J.O, Nyandoro,O.T, 2010, System identification and neural network based PID control of servo-hydraulic vehicle suspension system  SAIEE Africa Research Journal, 101(3):93-105.

[12] Du,H, Zhang,N, 2007,  control of active vehicle suspensions with actuator time delay  Journal of Sound and Vibration, 301(1-2):236-252.


[13] Du,H, Zhang,N, 2009, Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint  IEEE Transactions on Fuzzy Systems, 17(2):343-356.


[14] Du,H, Zhang,N, 2009, Static output feedback control for electrohydraulic active suspensions via T-S fuzzy model approach  Journal of Dynamic Systems, Measurement and Control, Transactions of ASME, 131(5):1-11.


[15] Du,H, Zhang,N, 2010, Robust active suspension design subject to vehicle inertial parameter variations  International Journal of Automation and Computing, 7(4):419-427.


[16] Ekoru,J.E.D, Dahunsi,O.A, Pedro,J.O, 2011, PID Control of a Nonlinear Half-car Active Suspension System via Force Feedback  , ():1-6.


[17] Eski,I, Yildirim,S, 2009, Vibration control of vehicle active suspension system using a new robust neural network control system  Simulation Modelling Practice and Theory, 17(5):778-793.


[18] Fateh,M.M, Alavi,S.S, 2009, Impedance control of an active suspension system  Mechatronics, 19(1):134-140.


[19] Feng,J.Z, Li,J, Yu,F, 2003, GA-based PID and fuzzy logic control for active vehicle suspension system  International Journal of Automotive Technology, 4(4):181-191.

[20] Fialho,I, Balas,G.J, 2002, Road adaptive active suspension using linear parameter-varying gain-scheduling  IEEE Transactions on Control Systems Technology, 10(1):43-54.


[21] Fischer,D, Isermann,R, 2004, Mechatronic semi-active and active vehicle suspensions  Control Engineering Practice, 12(11):1353-1367.


[22] Gao,H, Lam,J, Wang,C, 2006, Multi-objective control of vehicle active suspension systems via load-dependent controllers  Journal of Sound and Vibration, 290(3-5):654-675.


[23] Gao,Z, 2002, From linear to nonlinear control means: a practical progression  ISA Transactions, 41(2):177-189.


[24] Griffin,M.J, 2007, Discomfort from feeling vehicle vibration  Vehicle System Dynamics, 45(7-8):679-698.


[25] Guclu,R, 2003, Active control of seat vibrations of a vehicle model using various suspension alternatives  Turkish Journal of Engineering and Environmental Sciences, 27(6):361-373.

[26] Guglielmino,E, Edge,K.A, 2004, A controlled friction damper for vehicle applications  Control Engineering Practice, 12(4):431-443.


[27] Guo,B, Liu,H, Luo,Z, 2009, Adaptive PID Controller Based on BP Neural Network  , ():148-150.


[28] Hanafi,D, 2010, PID Controller Design for Semi-active Car Suspension based on Model from Intelligent System Identification  , ():60-63.


[29] Hassanzadeh,I, Alizadeh,G, Shirjoposht,N.P, Hashemzadeh,F, 2010, A new optimal nonlinear approach to half car active suspension  IACSIT International Journal of Engineering and Technology, 2(1):78-84.

[30] Hrovat,D, 1997, Survey of advanced suspension developments and related optimal control applications  Automatica, 33(10):1781-1817.


[31] Huang,C.J, Lin,J.S, Chen,C.C, 2010, Road adaptive algorithm design of half-car active suspension system  Expert Systems with Applications, 37(6):4392-4402.


[32] Ji,X.D, Wan,K.J, Hai,N.Y, 2007, Time Delay Force Control for Vehicle Active Suspension System  , ():640-645.


[33] Ji,X.J, Li,S.J, 2009, Design of the Fuzzy-PID Controller for New Vehicle Active Suspension with Electro-Hydrostatic Actuator  , ():60-63.


[34] Kumar,M.S, 2008, Development of an Active Suspension System for Automobiles using PID Controller  , ():1472-1477.

[35] Marusak,P.M, Kuntanapreeda,S, 2011, Constrained model predictive force control of an electrohydraulic actuator  Control Engineering Practice, 19(1):62-73.


[36] ODwyer,A, 2006, Handbook of PI an PID Controller Tuning Rules. Imperial College Press,London.

[37] Pedro,J.O, 2007,  -LQG/LTR controller design for active suspension systems  R and D Journal of the South African Institution of Mechanical Engineering, 23(2):32-41.

[38] Pedro,J.O, Dahunsi,O, 2011, Neural network based feedback linearization control of a servo-hydraulic vehicle suspension system  International Journal of Applied Mathematics and Computer Science, 21(1):137-147.


[39] Priyandoko,G, Mailah,M, Jamaluddin,H, 2009, Vehicle suspension system using skyhook adaptive neuro active force control  Mechanical Systems and Signal Processing, 23(3):855-868.


[40] Renn,J, Wu,T, 2007, Modelling and control of a new 1/4 servo-hydraulic vehicle active suspension system  Journal of Marine Science and Technology, 15(3):265-272.

[41] Ryu,S, Kim,Y, Park,Y, 2008, Robust preview control of an active suspension system with norm-bounded uncertainties  International Journal of Automotive Technology, 9():585-592.


[42] Sam,Y.M, Hudha,K, 2006, Modelling and Force Tracking of Hydraulic Actuator for an Active Suspension System  , ():1-6.


[43] Sammier,D, Sename,O, Dugard,L, 2003, Skyhook and H control of semi-active suspensions: some practical aspects  Vehicle System Dynamics, 39(4):279-308.


[44] Savaresi,S.M, Poussot-Vassal,C, Spelta,C, 2010, Semi-active Suspension Control Design for Vehicles. Butterworth-Heinemann,Boston.

[45] Szaszi,I, Gaspar,P, Bokor,J, 2002, Nonlinear Active Suspension Modelling using Linear Parameter Varying Approach  , ():1-10.

[46] 2001, Signal Processing Toolbox for Use with Matlab Users Guide Version 5.1  , ():-.

[47] Weber,P.A, Braaksma,J.P, 2000, Towards a North American geometric design standard for speed humps  ITE Journal, 70(1):30-34.

[48] Williams,R.A, 1997, Automotive active suspensions Part 2: Practical considerations  Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 211(6):427-444.


[49] Yagiz,N, Hacioglu,Y, 2008, Backstepping control of a vehicle with active suspensions  Control Engineering Practice, 16(12):1457-1467.


[50] Yoshimura,T, Kume,A, Kurimoto,M, Hino,J, 2001, Construction of an active suspension system of a quarter car model using the concept of sliding mode control  Journal of Sound and Vibration, 239(2):187-199.


[51] Zhao,Q, Yin,J, Li,D, 2011, Intelligent Compound Control of Vehicle Active Suspension based on RBF Neural Network  Proceedings of the 3rd International Conference on Measuring Technology and Mechatronics Automation, 2():441-444.


[52] Zuo,L, Nayfeh,S.A, 2003, Low order continuous-time filters for approximation of the ISO 2631-1 human vibration sensitivity weightings  Journal of Sound and Vibration, 265(2):459-465.



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE