Full Text:  <3529>

CLC number: TK124

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-05-16

Cited: 6

Clicked: 8145

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A

Accepted manuscript available online (unedited version)


Influence of compression-expansion effect on oscillating-flow heat transfer in a finned heat exchanger


Author(s):  Ke Tang, Juan Yu, Tao Jin, Zhi-hua Gan

Affiliation(s):  . Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):  jintao@zju.edu.cn

Key Words:  Heat transfer, Heat exchanger, Oscillating flow, Pressure ratio, Pulse tube refrigerator


Share this article to: More <<< Previous Paper|Next Paper >>>

Ke Tang, Juan Yu, Tao Jin, Zhi-hua Gan. Influence of compression-expansion effect on oscillating-flow heat transfer in a finned heat exchanger[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1300076

@article{title="Influence of compression-expansion effect on oscillating-flow heat transfer in a finned heat exchanger",
author="Ke Tang, Juan Yu, Tao Jin, Zhi-hua Gan",
journal="Journal of Zhejiang University Science A",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.A1300076"
}

%0 Journal Article
%T Influence of compression-expansion effect on oscillating-flow heat transfer in a finned heat exchanger
%A Ke Tang
%A Juan Yu
%A Tao Jin
%A Zhi-hua Gan
%J Journal of Zhejiang University SCIENCE A
%P 427-434
%@ 1673-565X
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.A1300076"

TY - JOUR
T1 - Influence of compression-expansion effect on oscillating-flow heat transfer in a finned heat exchanger
A1 - Ke Tang
A1 - Juan Yu
A1 - Tao Jin
A1 - Zhi-hua Gan
J0 - Journal of Zhejiang University Science A
SP - 427
EP - 434
%@ 1673-565X
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.A1300076"


Abstract: 
Compression and expansion of a working gas due to the pressure oscillation of an oscillating flow can lead to a temperature variation of the working gas, which will affect the heat transfer in the oscillating flow. This study focuses on the impact of the compression-expansion effect, indicated by the pressure ratio, on the heat transfer in a finned heat exchanger under practical operating conditions of the ambient-temperature heat exchangers in Stirling-type pulse tube refrigerators. The experimental results summarized as the Nusselt number are presented for analysis. An increase in the pressure ratio can result in a marked rise in the Nusselt number, which indicates that the compression-expansion effect should be considered in characterizing the heat transfer of the oscillating flow, especially in the cases with a higher Valensi number and a lower maximum Reynolds number.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Anderson,J.D, 1995, Computational Fluid Dynamics: The Basics with Applications. McGraw-Hill,New York.

[2] Bouvier,P, Stouffs,P, Bardon,J.P, 2005, Experimental study of heat transfer in oscillatory flow  International Journal of Heat and Mass Transfer, 48(12):2473-2482.


[3] Chen,Y, Luo,E.C, Dai,W, 2009, Heat transfer characteristics of oscillating flow regenerators in cryogenic temperature range below 20 K  Cryogenics, 49(7):313-319.

[4] Cooper,W.L, Nee,V.W, Yang,K.T, 1994, An experimental investigation of convective heat transfer from the heated floor of a rectangular duct to a low frequency, large tidal displacement oscillating flow  International Journal of Heat and Mass Transfer, 37(4):581-592.

[5] de Waele,A.T.A.M, 2011, Basic operation of cryocoolers and related thermal machines  Journal of Low Temperature Physics, 164(5-6):179-236.


[6] de Waele,A.T.A.M, 2012, Finite heat-capacity effects in regenerators  Cryogenics, 52(1):1-7.


[7] Dietrich,M, Thummes,G, 2010, Two-stage high frequency pulse tube cooler for refrigeration at 25 K  Cryogenics, 50(4):281-286.


[8] Gusev,V, Lotton,P, Bailliet,H, Job,S, Bruneau,M, 2001, Thermal wave harmonics generation in the hydrodynamical heat transport in thermoacoustics  Journal of the Acoustical Society of America, 109(1):84-90.

[9] Hino,M, Sawamoto,M, Takasu,S, 1976, Experiments on transition to turbulence in an oscillatory pipe-flow  Journal of Fluid Mechanics, 75(2):193-207.

[10] Incropera,F.P, DeWitt,D.P, Bergman,T.L, 2007, Fundamentals of Heat and Mass Transfer. Wiley,New York.

[11] Jaworski,A.J, Piccolo,A, 2012, Heat transfer processes in parallel-plate heat exchangers of thermoacoustic devicesnumerical and experimental approaches  Applied Thermal Engineering, 42():145-153.

[12] Meng,F, Wang,M, Li,Z, 2008, Lattice Boltzmann simulations of conjugate heat transfer in high-frequency oscillating flows  International Journal of Heat and Fluid Flow, 29(4):1203-1210.


[13] Merkli,P, Thomann,H, 1975, Transition to turbulence in oscillating pipe flow  Journal of Fluid Mechanics, 68(3):567-575.

[14] Nsofor,E.C, Celik,S, Wang,X.D, 2007, Experimental study on the heat transfer at the heat exchanger of the thermoacoustic refrigerating system  Applied Thermal Engineering, 27(14-15):2435-2442.


[15] Piccolo,A, 2011, Numerical computation for parallel plate thermoacoustic heat exchangers in standing wave oscillatory flow  International Journal of Heat and Mass Transfer, 54(21-22):4518-4530.


[16] Qiu,L.M, Zhi,X.Q, Han,L, Cao,Q, Gan,Z.H, 2012, Performance improvement of multi-stage pulse tube cryocoolers with a self-precooled pulse tube  Cryogenics, 52(10):575-579.


[17] Shi,L, Yu,Z, Jaworski,A.J, 2010, Application of laser-based instrumentation for measurement of time-resolved temperature and velocity fields in the thermoacoustic system  International Journal of Thermal Sciences, 49(9):1688-1701.


[18] Swift,G.W, 1992, Analysis and performance of a large thermoacoustic engine  Journal of the Acoustical Society of America, 92(3):1551-1563.

[19] Swift,G.W, 2002, Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators. Acoustical Society of America, American Institute of Physics,New York.

[20] Tang,K, Huang,Z.J, Jin,T, Bao,R, Chen,G.B, 2007, Influence of input acoustic power on regenerators performance  Journal of Zhejiang University-SCIENCE A, 8(9):1452-1456.


[21] Tang,K, Huang,Z.J, Jin,T, Chen,G.B, 2008, Impact of load impedance on the performance of a thermoacoustic system employing acoustic pressure amplifier  Journal of Zhejiang University-SCIENCE A, 9(1):79-87.


[22] Tang,K, Zhang,Y, Lin,X.G, Jin,S.H, Jin,T, 2011, Hydrodynamic and thermal development of compressible oscillatory flow inside circular channel  Cryogenics, 51(3):139-145.


[23] Zhao,T.S, Cheng,P, 1996, Oscillatory heat transfer in a pipe subjected to a laminar reciprocating flow  Journal of Heat Transfer-Transactions of the ASME, 118(3):592-597.


Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE