CLC number: O343.1
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-09-15
Cited: 0
Clicked: 4658
Citations: Bibtex RefMan EndNote GB/T7714
Chun-xiao Zhan, Yi-hua Liu. Plane elasticity solutions for beams with fixed ends[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1500043 @article{title="Plane elasticity solutions for beams with fixed ends", %0 Journal Article TY - JOUR
Abstract: This is a quite interesting and complete work on the seemingly old but important problem in elasticity. The paper suggests a new mathematical form to express the fixed boundary of a beam, which combines the two existing ones in Timoshenko and Goodier by introducing a parameter which is determined on a reasonable ground. Numerical comparison with FEM shows that the new form enables more accurate results.
含固支端梁的弹性力学解创新点:在已有固支边界条件的基础上,提出新的固支边界条件,由此得到的含固支端梁的弹性力学解的精度有很大提高。 方法:1. 综合Timoshenko和Goodier提出的两种固支边界条件,构造出一种新的固支边界条件,并应用Airy应力函数法推导出三种含固支端梁的解析解;2. 对由不同固支边界条件得到的解析解与有限元解进行比较。 结论:1. 与已有的固支边界条件相比,本文提出的固支边界条件更佳,尤其是对短梁;2. 理论与数值结果均表明,对超静定短梁,位移u不再保持线性分布,经典梁理论中的平截面假设不再适用。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Ahmed, S.R., Idris, A.B.M., Uddin, M.W., 1996. Numerical solution of both ends fixed deep beams. Computers & Structures, 61(1):21-29. [2]Ahmed, S.R., Khan, M.R., Islam, K.M.S., et al., 1998. Investigation of stresses at the fixed end of deep cantilever beams. Computers and Structures, 69(3):329-338. [3]Bhimaraddi, A., 1988. Generalized analysis of shear deformable rings and curved beams. International Journal of Solids and Structures, 24(4):363-373. [4]Cowper, G.R., 1966. The shear coefficient in Timoshenko’s beam theory. Journal of Applied Mechanics, 33(2):335-340. [5]Dai, Y., Ji, X., 2008. A plane stress solution of deep beam with fixed ends under uniform loading. Journal of Tongji University (Natural Science), 36(7):890-893 (in Chinese). [6]Ding, H.J., Huang, D.J., Wang, H.M., 2005. Analytical solution for fixed-end beam subjected to uniform load. Journal of Zhejiang University-SCIENCE A, 6(8):779-783. [7]Ding, H.J., Huang, D.J., Wang, H.M., 2006. Analytical solution for fixed-fixed anisotropic beam subjected to uniform load. Applied Mathematics and Mechanics, 27(10):1305-1310. [8]Ding, H.J., Huang, D.J., Chen, W.Q., 2007. Elasticity solutions for plane anisotropic functionally graded beams. International Journal of Solids and Structures, 44(1):176-196. [9]Gao, Y., Wang, M.Z., 2006. The refined theory of deep rectangular beams based on general solutions of elasticity. Science in China: Series G Physics, Mechanics & Astronomy, 49(3):291-303. [10]Ghugal, Y.M., Sharma, R., 2011. A refined shear deformation theory for flexure of thick beams. Latin American Journal of Solids and Structures, 8(2):183-195. [11]Heyliger, P.R., 2013. When beam theories fail. Journal of Mechanics of Materials and Structures, 8(1):15-35. [12]Heyliger, P.R., Reddy, J.N., 1988. A higher order beam finite element for bending and vibration problems. Journal of Sound and Vibration, 126(2):309-326. [13]Huang, D.J., Ding, H.J., Chen, W.Q., 2010. Static analysis of anisotropic functionally graded magneto-electro-elastic beams subjected to arbitrary loading. European Journal of Mechanics-A/Solids, 29(3):356-369. [14]Jiang, A.M., Ding, H.J., 2005. The analytical solutions for orthotropic cantilever beams (I): subjected to surface forces. Journal of Zhejiang University-SCIENCE A, 6(2):126-131. [15]Kant, T., Gupta, A., 1988. A finite element model for a higher-order shear-deformable beam theory. Journal of Sound and Vibration, 125(2):193-202. [16]Lekhnitskii, S.G., 1968. Anisotropic Plate. Gordon and Breach, New York, USA. [17]Levinson, M., 1981. A new rectangular beam theory. Journal of Sound and Vibration, 74(1):81-87. [18]Nie, G.J., Zhong, Z., Chen, S., 2013. Analytical solution for a functionally graded beam with arbitrary graded material properties. Composites Part B: Engineering, 44(1):274-282. [19]Timoshenko, S.P., 1921. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philosophical Magazine Series 6, 41(245):744-746. [20]Timoshenko, S.P., 1922. On the transverse vibration of bars of uniform cross-section. Philosophical Magazine Series 6, 43(253):125-131. [21]Timoshenko, S.P., Goodier, J.N., 1970. Theory of Elasticity, 3rd Edition. McGraw-Hill, New York, USA. [22]Timoshenko, S.P., Gere, J.M., 1972. Mechanics of Materials. Van Nostrand Reinhold, New York, USA. [23]Wang, M.Q., Liu, Y.H., 2010. Analytical solution for bi-material beam with graded intermediate layer. Composite Structures, 92(10):2358-2368. [24]Zhao, L., Chen, W.Q., Lü, C.F., 2012. New assessment on the Saint-Venant solutions for functionally graded beams. Mechanics Research Communications, 43:1-6. [25]Zhong, Z., Yu, T., 2007. Analytical solution of a cantilever functionally graded beam. Composites Science and Technology, 67(3-4):481-488. Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>