CLC number: TU317.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-12-12
Cited: 0
Clicked: 4665
Citations: Bibtex RefMan EndNote GB/T7714
Xu Wang, Peng Huang, Xian-feng Yu, Xin-rong Wang, Hai-ming Liu. Wind characteristics near the ground during typhoon Meari[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1500310 @article{title="Wind characteristics near the ground during typhoon Meari", %0 Journal Article TY - JOUR
Abstract: This paper was well-organized written and presented a valuable case history study for wind characteristics during typhoons.
台风"米雷"近地层风特性实测研究创新点:1. 利用浦东实测基地的测风塔,获得10 m、20 m、30 m和40 m高度处台风"米雷"的风速实测数据。2. 对台风"米雷"作用下的近地风特性进行分析,并对不同风特性参数之间的相互关系进行研究。 方法:1. 在浦东实测基地建立40 m高的测风塔,利用现场实测的方法,研究台风"米雷"作用下的近地层风场特性;2. 利用经验公式拟合的方法,将现场实测结果与经验公式所得结果进行比较,并分析它们之间的差异。 结论:1. 各向湍流积分尺度均呈现随平均风速的增大而增大的趋势,在10 m、20 m和40 m高度处各向湍流积分尺度的均值之比分别为1:0.69:0.08、1:0.61:0.09和1:0.65:0.13;2. 当平均时距大于10 min时,u和v方向的湍流积分尺度随平均时距的增大而增大,但w方向的湍流积分尺度基本不随平均时距的改变而改变;3. 台风初期惯性子区各湍流分量功率谱的分布斜率小于-5/3,随后逐渐满足Kolmogorov 5/3率,纵向脉动风速功率谱与von Karman 经验谱吻合较好,而横向和竖向脉动风速功率谱与von Karman 经验谱在高频段有所偏差。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AIJ (Architectural Institute of Japan), 2004. AIJ 2004 Recommendations for Loads on Buildings. AIJ, Tokyo, Japan. ![]() [2]ASCE (American Society of Civil Engineers), 2010. Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10. ASCE, Reston, VA, USA. ![]() [3]BSI (British Standards Institution), 2004. “Structural Eurocodes”, Eurocode 1: Actions on Structures-General Actions-Part 1-4: Wind actions, Technical Committee CEN/TC250. BSI, London, UK. ![]() [4]Cao, S.Y., Tamura, Y., Kikuchi, N., et al., 2009. Wind characteristics of a strong typhoon. Journal of Wind Engineering and Industrial Aerodynamics, 97(1):11-21. ![]() [5]Choi, E.C.C., 1978. Characteristics of typhoons over the South China Sea. Journal of Wind Engineering and Industrial Aerodynamics, 3(4):353-365. ![]() [6]Davenport, A.G., 1960. Rationale for determining design wind velocities. ASCE Journal of the Structural Division, 86(5):39-68. ![]() [7]Davenport, A.G., 1968. The dependence of wind load on meteorological parameters. In: Wind Effects on Building and Structures. University of Toronto Press, Toronto, Canada, p.19-82. ![]() [8]Deaves, D.M., 1981a. Computations of wind flow over changes in surface roughness. Journal of Wind Engineering and Industrial Aerodynamics, 7(1):65-94. ![]() [9]Deaves, D.M., 1981b. Terrain dependence of longitudinal R.M.S. velocities in the neutral atmosphere. Journal of Wind Engineering and Industrial Aerodynamics, 8(3):259-274. ![]() [10]Deaves, D.M., Harris, R.I., 1978. A Mathematical Model of the Structure of Strong Winds. Technical Report, Construction Industry Research and Information Association, London, UK. ![]() [11]Flay, G.J., Stevenson, D.C., 1988. Integral length scales in strong winds below 20 m. Journal of Wind Engineering and Industrial Aerodynamics, 28(1-3):21-30. ![]() [12]Geernaert, G.L., 1988. Measurements of the angle between the wind vector and wind stress vector in the surface layer over the North Sea. Journal of Geophysical Research: Oceans, 93(C7):8215-8220. ![]() [13]Grimmond, C.S.B., King, T.S., Roth, M., et al., 1998. Aerodynamic roughness of urban areas derived from wind observations. Boundary-Layer Meteorology, 89(1):1-24. ![]() [14]Huang, P., Wang, X., Gu, M., 2012. Field experiments for wind loads on a low-rise building with adjustable pitch. International Journal of Distributed Sensor Networks, 2012: 1-10. ![]() [15]Hui, M.C.H., Larsen, A., Xiang, H.F., 2009. Wind turbulence characteristics study at the Stonecutters Bridge site: part II—wind power spectra, integral length scales and coherences. Journal of Wind Engineering and Industrial Aerodynamics, 97(1):48-59. ![]() [16]Kato, N., Ohkuma, T., Kim, J.R., et al., 1992. Full scale measurements of wind speed in two urban areas using an ultrasonic anemometer. Journal of Wind Engineering and Industrial Aerodynamics, 41(1-3):67-78. ![]() [17]Li, Q.S., Zhi, L., Hu, F., 2010. Boundary layer wind structure from observations on a 325 m tower. Journal of Wind Engineering and Industrial Aerodynamics, 98(12):818-832. ![]() [18]Liu, M., Liao, H., Li, M., et al., 2012. Long-term field measurement and analysis of the natural wind characteristics at the site of Xi-hou-men Bridge. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(3):197-207. ![]() [19]Ly, L.N., 1993. Effects of the angle between wind stress and wind velocity vectors on the aerodynamic drag coefficient at the air-sea interface. Journal of Physical Oceanography, 23(1):159-163. ![]() [20]Panofsky, H.A., Dutton, J.A., 1984. Atmospheric Turbulence: Models and Methods for Engineering Applications. John Wiley & Sons, Inc., New York, USA, p.62-63. ![]() [21]Patil, M.N., 2006. Aerodynamic drag coefficient and roughness length for three seasons over a tropical western Indian station. Atmospheric Research, 80(4):280-293. ![]() [22]Prandtl, L., 1949. Führer durch die Strömungslehre. Friedrich Vieweg & Sohn, Braunschweig, Germany (in German). ![]() [23]Rotach, M.W., 1993. Turbulence close to a rough urban surface part I: Reynolds stress. Boundary-Layer Meteorolgy, 65(1-2):1-28. ![]() [24]Schroeder, J.L., Smith, D.A., 2003. Hurricane Bonnie wind flow characteristics as determined from WEMITE. Journal of Wind Engineering and Industrial Aerodynamics, 91(6):767-789. ![]() [25]Shiau, B.S., 2000. Velocity spectra and turbulence statistics at the northeastern coast of Taiwan under high-wind condition. Journal of Wind Engineering and Industrial Aerodynamics, 88(2-3):139-151. ![]() [26]Simiu, E., Scanlan, R.H., 1996. Wind Effects on Structures —Fundamentals and Applications to Design. John Wiley & Sons, Inc., USA. ![]() [27]Song, L.L., Li, Q.S., Chen, W.C., et al., 2012. Wind characteristics of a strong typhoon in marine surface boundary layer. Wind and Structures, 15(1):1-15. ![]() [28]Tieleman, H.W., 2008. Strong wind observations in the atmospheric surface layer. Journal of Wind Engineering and Industrial Aerodynamics, 96(1):41-77. ![]() [29]von Karman, T., 1948. Progress in the statistical theory of turbulence. Proceedings of the National Academy of Sciences of the United States of America, 34(11):530-539. ![]() [30]Wang, H., Li, A., Niu, J., et al., 2013. Long-term monitoring of wind characteristics at Sutong Bridge site. Journal of Wind Engineering and Industrial Aerodynamics, 115:39-47. ![]() [31]Wang, H., Guo, T., Tao, T.Y., et al., 2015. Study on wind characteristics of Runyang Suspension Bridge based on long-term monitored data. International Journal of Structural Stability and Dynamics, 16(4):1640019. ![]() [32]Wang, X., Huang, P., Gu, M., 2012. Field investigation on wind loads of a low building with adjustable roof pitch near sea. Journal of Vibration and Shock, 31(20):84-89 (in Chinese). ![]() [33]Weber, R.O., 1999. Remarks on the definition and estimation of friction velocity. Boundary-Layer Meteorology, 93(2):197-209. ![]() [34]Xiao, Y.Q., Li, L.X., Song, L.L., 2009. Study on typhoon wind characteristics based on field measurements. The Seventh Asia-Pacific Conference on Wind Engineering. ![]() [35]Xu, Y.L., Zhan, S., 2001. Field measurements of Di Wang Tower during Typhoon York. Journal of Wind Engineering and Industrial Aerodynamics, 89(1):73-93. ![]() [36]Yu, B., Chowdhury, A.G., 2009. Gust factors and turbulence intensities for the tropical cyclone environment. Journal of Applied Meteorology and Climatology, 48(3):534-552. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>