CLC number: TU42
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-05-15
Cited: 0
Clicked: 5883
Citations: Bibtex RefMan EndNote GB/T7714
Cheng Mei, Xu Liang, Hong-yue Sun, Meng-ping Wu. High-lift siphon flow velocity in a 4-mm siphon hose[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1600428 @article{title="High-lift siphon flow velocity in a 4-mm siphon hose", %0 Journal Article TY - JOUR
Abstract: This paper describes an experiment with a siphon constructed from 4-mm tubing and describes flow as function of siphon height and length. In particular, the paper shows that with a 4-mm siphon tube, beyond a certain height difference between the upper and lower reservoirs, flow velocity is a function of the height of the apex above the upper reservoir level. These siphons are useful in draining water-logged land. In my opinion this paper is a useful contribution to the siphon literature.
4 mm虹吸管高扬程虹吸流速研究创新点:1. 通过对比物理模型实验值和计算值,得出了高扬程虹吸流速的控制因素及传统虹吸流速计算公式在高扬程条件下的不适用性;2. 通过分析实验数据,对有压管流水力学公式进行修正,使之适应高扬程条件下的虹吸流速计算. 方法:通过物理模型试验,揭示高扬程虹吸流速的特征(图3);将高扬程虹吸流速实验值和传统虹吸流速水力学公式计算值进行对比(表3和4);通过分析实验数据,结合有压管流水力学公式,得出高扬程虹吸流速经验公式(公式(5)和(8)). 结论:1. 在高程差H1一定时,虹吸流速与扬程呈负相关;在扬程H0一定时,虹吸流速随高程差H1的增大而流速加快,直至达到最大流速,并保持稳定状态;虹吸流速与管长呈负相关.2. 高扬程虹吸排水由于管内气压降低析出大量气泡,形成气液二相流,影响虹吸流速的计算;目前采用的有压管流水力学计算公式不适用高扬程4 mm虹吸管的虹吸水流.3. 当H1<2ΔH, 虹吸流速的控制因素为高程差H1;当H1≥2ΔH, 虹吸流速的控制因素为当地虹吸极限扬程Hmax和H0的差值ΔH;4. 对于高扬程4 mm虹吸管虹吸流速的确定,一是可以直接实验测定,查找相关数据,二是可以采用经验公式来确定相关的虹吸流速. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Arthur, S., Wright, G.B., 2007. Siphonic roof drainage systems-priming focused design. Building and Environment, 42(6):2421-2431. ![]() [2]Bomont, S., 2008. Back experience of deep drainage for land-slide stabilization through lines of siphon drains and electro-pneumatics drains: a French railway slope stabilization example. In: Chen, J.Y., Zhang, J.M., Li, Z.K., et al. (Eds.), Landslides and Engineered Slope: from the Past to the Future. CRC Press, Boca Raton, USA, p.1713-1720. ![]() [3]Cai, Y.L., Sun, H.Y., Shang, Y.Q., et al., 2014. An investigation of flow characteristics in slope siphon drains. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(1):22-30. ![]() [4]Cai, Y.L., Sun, H.Y., Shang, Y.Q., et al., 2015. Air accumulation in high-lift siphon hoses under the influence of air dissolution and diffusion. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(9):760-768. ![]() [5]Clark, A.R., Fort, D.S., Holliday, J.K., et al., 2007. Allowing for climate change: an innovative solution to landslide stabilisation in an environmentally sensitive area on the Isle of Wight. In: Mathie, E., McInnes, R., Fairbank, H., et al. (Eds.), Landslides and Climate Change: Challenges and Solutions. Taylor and Francis Group, London, UK, p.443-454. ![]() [6]Corominas, J., Moya, J., Ledesma, A., et al., 2005. Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides, 2(2):83-96. ![]() [7]Gillarduzzi, A., 2008. Sustainable landslide stabilisation using deep wells installed with siphon drains and electro-pneumatic pumps. In: Chen, J.Y., Zhang, J.M., Li, Z.K., et al. (Eds.), Landslides and Engineered Slope: from the Past to the Future. CRC Press, Boca Raton, USA, p.1547-1552. ![]() [8]Gress, J.C., 2008. New formulae to assess soil permeability through laboratory identification and flow coming out of vertical drains. Proceedings of the 10th International Symposium on Landslides and Engineered Slopes, p.361-364. ![]() [9]Hu, M.L., Wu, X.R., 2011. Fluid Mechanics. Wuhan University of Technology Press, Wuhan, China, p.120-122 (in Chinese). ![]() [10]Igwe, O., Mode, W., Nnebedum, O., et al., 2014. The analysis of rainfall-induced slope failures at Iva Valley area of Enugu State, Nigeria. Environmental Earth Sciences, 71(5):2465-2480. ![]() [11]Mrvik, O., Bomont, S., 2011. Experience with treatment of road structure landslides by innovative methods of deep drainage. In: Mambretti, S. (Ed.), Landslides. WIT Press, UK, p.79-90. ![]() [12]Rehbinder, G., 1994. Sediment removal with a siphon at critical flux. Journal of Hydraulic Research, 32(6):845-860. ![]() [13]Shang, Y.Q., Cai, Y.L., Wei, Z.L., et al., 2015. Siphon drainage method for landslide prevention. Journal of Engineering Geology, 23(4):706-711 (in Chinese). ![]() [14]Sun, H.Y., Wong, L.N.Y., Shang, Y.Q., et al., 2010. Evaluation of drainage tunnel effectiveness in landslide control. Landslides, 7(4):445-454. ![]() [15]Tadayon, R., Ramamurthy, A.S., 2012. Discharge coefficient for siphon spillways. Journal of Irrigation and Drainage Engineering, 139(3):267-270. ![]() [16]Ullah, S.M., Mazurek, K.A., Rajaratnam, N., et al., 2005. Siphon removal of cohesionless materials. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131(3):115-122. ![]() [17]Wright, G.B., Jack, L.B., Swaffield, J.A., 2006. Investigation and numerical modelling of roof drainage systems under extreme events. Building and Environment, 41(2):126-135. ![]() [18]Xiong, X.L., Sun, H.Y., Zhang, S.H., et al., 2014. Analysis of condition of ensuring high-lift siphon drainage and numerical simulation of choice of optimum diameter. Journal of Jilin University (Earth Science Edition), 44(5):1595-1601 (in Chinese). ![]() [19]Zhang, Y.F., 1999. Experimental study on indoor siphon drainage. Subgrade Engineering, 4:22-25 (in Chinese). ![]() [20]Zhang, Y.F., Zhang, Y.J., 1999. Research on siphon drainage application technology. China Railway Science, 20(3):52-60 (in Chinese). ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>