CLC number: TU44
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-11-15
Cited: 0
Clicked: 6888
Shuai Yuan, Hong-zhi Zhong. Finite deformation elasto-plastic consolidation analysis of soft clay by the weak form quadrature element method[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1600671 @article{title="Finite deformation elasto-plastic consolidation analysis of soft clay by the weak form quadrature element method", %0 Journal Article TY - JOUR
Abstract: The finite deformation elastoplastic consolidation analysis is an important topic in geotechnical engineering. This paper presents a finite deformation elastoplastic consolidation analysis of soft clay by using an interesting total Lagrangian weak form quadrature element method. The multiplicative plasticity formulation is employed to describe the soil skeleton, meanwhile, an exponential flow relation between velocity of pore fluid and hydraulic gradient is used for the Biot's continuity condition. The effectiveness of the propsoed method is verified by several benchmark examples.
软粘土弹塑性大变形的求积元法分析创新点:1. 提出一种大变形固结问题的高阶数值求解方法;2. 在固结问题求解中同时考虑几何非线性及非线性渗流定律。 方法:1. 基于初始构型,采用完全拉格朗日格式,建立大变形固结问题求解列式;2. 基于变形梯度乘法分解,得到大变形条件下的土体本构模型;3. 基于指数关系的渗流定律,建立渗流连续性方程; 4. 通过数值算例验证方法,研究几何非线性及非达西渗流对软粘土固结的影响。 结论:1. 所建立的求积元方法的收敛速度要远远快于有限元法,降低了问题计算规模;2. 在小变形条件下,最终沉降随外荷载线性变化,而在大变形条件下,随着载荷的增大,沉降相对于小变形条件有所降低;3. 当考虑非达西渗流定律时,软粘土的固结速率随着非达西渗流参数的增加而降低。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Al-Tabbaa, A., 1987. Permeability and Stress-strain Response of Speswhite Kaolin. PhD Thesis, University of Cambridge, Cambridge, UK. ![]() [2]Armero, F., 1999. Formulation and finite element implementation of a multiplicative model of coupled poro-plasticity at finite strains under fully saturated conditions. Computer Methods in Applied Mechanics and Engineering, 171(3):205-241. ![]() [3]Biot, M.A., 1941. General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2):155-164. ![]() [4]Borja, R.I., Alarcón, E., 1995. A mathematical framework for finite strain elastoplastic consolidation. Part 1: balance laws, variational formulation, and linearization. Computer Methods in Applied Mechanics and Engineering, 122(1):145-171. ![]() [5]Borja, R.I., Tamagnini, C., Alarcón, E., 1998. Elastoplastic consolidation at finite strain part 2: finite element implementation and numerical examples. Computer Methods in Applied Mechanics and Engineering, 159(1):103-122. ![]() [6]Callari, C., Auricchio, F., Sacco, E., 1998. A finite-strain Cam-clay model in the framework of multiplicative elasto-plasticity. International Journal of Plasticity, 14(12):1155-1187. ![]() [7]Carter, J.P., Small, J., Booker, J.R., 1977. A theory of finite elastic consolidation. International Journal of Solids and Structures, 13(5):467-478. ![]() [8]Carter, J.P., Booker, J.R., Small, J.C., 1979. The analysis of finite elasto-plastic consolidation. International Journal for Numerical and Analytical Methods in Geomechanics, 3(2):107-129. ![]() [9]Gibson, R., England, G., Hussey, M., 1967. The theory of one-dimensional consolidation of saturated clays. Geotechnique, 17(3):261-273. ![]() [10]Hansbo, S., 1997. Aspects of vertical drain design: Darcian or non-Darcian flow. Geotechnique, 47(5):983-992. ![]() [11]Hansbo, S., 2001. Consolidation equation valid for both Darcian and non-Darcian flow. Geotechnique, 51(1):51-54. ![]() [12]He, R., Zhong, H., 2012. Large deflection elasto-plastic analysis of frames using the weak-form quadrature element method. Finite Elements in Analysis and Design, 50: 125-133. ![]() [13]Kuang, L.W., 2010. Finite Element Analysis of Large Deformation Consolidation of Soft Clays Based on Biot’s Theory. MS Thesis, Jinan University, Guangzhou, China (in Chinese). ![]() [14]Lewis, R.W., Roberts, G.K., Zienkiewicz, O.C., 1976. A non-linear flow and deformation analysis of consolidation problems. Numerical Methods in Geomechanics, 2: 1106-1118. ![]() [15]Li, T., 2001. Large Deformation Consolidation Theory Based on the U.L. Description and the Finite Element Analysis. MS Thesis, Chang’an University, Xi’an, China (in Chinese). ![]() [16]Miehe, C., 1996. Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Computer Methods in Applied Mechanics and Engineering, 134(3):223-240. ![]() [17]Mikasa, M., 1965. The consolidation of soft clay. Civil Engineering in Japan, 1(1):21-26. ![]() [18]Mo, Y., Ou, L., Zhong, H., 2009. Vibration analysis of Timoshenko beams on a nonlinear elastic foundation. Tsinghua Science & Technology, 14(3):322-326. ![]() [19]Preisig, M., Prévost, J.H., 2011. Stabilization procedures in coupled poromechanics problems: a critical assessment. International Journal for Numerical & Analytical Methods in Geomechanics, 35(11):1207-1225. ![]() [20]Prévost, J.H., 1983. Implicit-explicit schemes for nonlinear consolidation. Computer Methods in Applied Mechanics and Engineering, 39(2):225-239. ![]() [21]Sandhu, R.S., Wilson, E.L., 1969. Finite element analysis of seepage in elastic media. Journal of the Engineering Mechanics Division, ASCE, 95(3):641-652. ![]() [22]Simo, J., 1992. Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Computer Methods in Applied Mechanics and Engineering, 99(1):61-112. ![]() [23]Simo, J., Meschke, G., 1993. A new class of algorithms for classical plasticity extended to finite strains. Application to geomaterials. Computational Mechanics, 11(4):253-278. ![]() [24]Slepicka, F., 1960. Contribution to the solution of the filtration law. International Union of Geodesy and Geophysics, Commission of Subterranean Waters, p.245-258. ![]() [25]Teh, C.I., Nie, X.Y., 2002. Coupled consolidation theory with non-Darcian flow. Computers and Geotechnics, 29(3):169-209. ![]() [26]Wang, D., Xie, P., Lu, H., 2013. Meshfree consolidation analysis of saturated porous media with stabilized conforming nodal integration formulation. Interaction & Multiscale Mechanics, 6(2):107-125. ![]() [27]Xie, Y.L., Pan, Q.Y., Zeng, G.X., 1994. Three-dimensional finite deformation consolidation theory based on the spatial description. Journal of Chang’an University (Natural Science Edition), 4:6-12 (in Chinese). ![]() [28]Xie, Y.L., Pan, Q.Y., Zeng, G.X., 1995. Three-dimensional finite deformation consolidation theory based on the material description and the finite element solution. Journal of Zhejiang University (Natural Science Edition), 4:476-485 (in Chinese). ![]() [29]Yuan, S., 2015. Analysis of Saturated and Unsaturated Soils by the Weak Form Quadrature Element Method. PhD Thesis, Tsinghua University, Beijing, China (in Chinese). ![]() [30]Yuan, S., Zhong, H., 2014. Consolidation analysis of non-homogeneous soil by the weak form quadrature element method. Computers and Geotechnics, 62:1-10. ![]() [31]Yuan, S., Zhong, H., 2015. Weak form quadrature element analysis of seepage problems. Journal of Geotechnical Engineering, 37(2):257-262 (in Chinese). ![]() [32]Zhong, H., Gao, M., 2010. Quadrature element analysis of planar frameworks. Archive of Applied Mechanics, 80(12):1391-1405. ![]() [33]Zhong, H., Wang, Y., 2010. Weak form quadrature element analysis of Bickford beams. European Journal of Mechanics-A/Solids, 29(5):851-858. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>