CLC number: TH161.12
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-07-10
Cited: 0
Clicked: 11145
Jun Wang, Ting-wei Chen, Yu-an Jin, Yong He. Variable bead width of material extrusion-based additive manufacturing[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1700236 @article{title="Variable bead width of material extrusion-based additive manufacturing", %0 Journal Article TY - JOUR
Abstract: This paper investigates the effects of process parameters, namely layer thickness, flow rate, and travel speed rate, on the bead width of material extrusion-based additive manufacturing processes. The applications of variable bead width to extrusion-based AM are described.
面向材料挤出成型增材制造的自适应丝宽研究创新点:1. 通过实验与物理模型结合的方法,推导关键参数与丝宽的函数关系; 2. 基于增材制造技术的工艺特点,提出自适应丝宽在该工艺中的典型应用. 方法:1. 通过物理模型分析与数学推导,构建挤出丝宽与关键过程参数的函数关系,得到众多过程参数中对丝宽影响最为显著的两个参数; 2. 通过实验分析与对比,对构建的数学模型进行验证; 3. 提出自适应可变丝宽的实现方法及典型应用的实施方案. 结论:1. 挤出成型增材制造技术可以通过参数调节获得可控的挤出丝宽; 2. 两大关键工艺参数与丝宽之间存在关联函数; 3. 运用自适应可变丝宽可以提高工艺的适用性. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Ahn D, Kweon JH, Kwon S, et al., 2009. Representation of surface roughness in fused deposition modeling. Journal of Materials Processing Technology, 209(15-16):5593-5600. [2]Boschetto A, Giordano V, Veniali F, 2012. Modelling micro geometrical profiles in fused deposition process. International Journal of Advanced Manufacturing Technology, 61(9-12):945-956. [3]Boschetto A, Bottini L, Veniali F, 2016. Finishing of fused deposition modeling parts by CNC machining. Robotics and Computer-Integrated Manufacturing, 41:92-101. [4]Ding D, Pan Z, Cuiuri D, et al., 2015. A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM). Robotics and Computer-Integrated Manufacturing, 31:101-110. [5]Ding D, Pan Z, Cuiuri D, et al., 2016. Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing. Robotics and Computer-Integrated Manufacturing, 39:32-42. [6]Hu K, Jin S, Wang CCL, 2015. Support slimming for single material based additive manufacturing. Computer-Aided Design, 65:1-10. [7]Jin Y, He Y, Xue G, et al., 2014. A parallel-based path generation method for fused deposition modeling. The International Journal of Advanced Manufacturing Technology, 77(5-8):927-937. [8]Jin Y, Li H, He Y, et al., 2015a. Quantitative analysis of surface profile in fused deposition modelling. Additive Manufacturing, 8:142-148. [9]Jin Y, He Y, Fu J, 2015b. Support generation for additive manufacturing based on sliced data. The International Journal of Advanced Manufacturing Technology, 80(9-12):2041-2052. [10]Jin Y, Wan Y, Zhang B, et al., 2017a. Modeling of the chemical finishing process for polylactic acid parts in fused deposition modeling and investigation of its tensile properties. Journal of Materials Processing Technology, 240:233-239. [11]Jin Y, Du J, He Y, et al., 2017b. Modeling and process planning for curved layer fused deposition. The International Journal of Advanced Manufacturing Technology, 91(1-4):273-285. [12]Kulkarni P, Marsan A, Dutta D, 2000. A review of process planning techniques in layered manufacturing. Rapid Prototyping Journal, 6(1):18-35. [13]Li P, Ji S, Zeng X, et al., 2007. Direct laser fabrication of thin-walled metal parts under open-loop control. International Journal of Machine Tools and Manufacture, 47(6):996-1002. [14]McCullough EJ, Yadavalli VK, 2013. Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices. Journal of Materials Processing Technology, 213(6):947-954. [15]Rahmati S, Vahabli E, 2015. Evaluation of analytical modeling for improvement of surface roughness of FDM test part using measurement results. International Journal of Advanced Manufacturing Technology, 79(5-8):823-829. [16]Turner BN, Strong R, Gold SA, 2014. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyping Journal, 20(3):192-204. [17]Zhu Z, Dhokia V, Newman ST, 2016. A new algorithm for build time estimation for fused filament fabrication technologies. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(12):2214-2228 Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>