CLC number: O354.4; O354.5
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-07-15
Cited: 0
Clicked: 4099
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-8116-0668
Liang Li, Hong-bo Wang, Guo-yan Zhao, Ming-bo Sun, Da-peng Xiong, Tao Tang. Efficient WENOCU4 scheme with three different adaptive switches[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2000006 @article{title="Efficient WENOCU4 scheme with three different adaptive switches", %0 Journal Article TY - JOUR
三种不同自适应开关的高效WENOCU4格式研究创新点:1. 提供了高效WENOCU4格式的自适应参数C的参考值; 2. 系统地评估了三种自适应开关(二进制型、连续型和双曲正切型)的性能,并证实了二进制型开关的最佳表现. 方法:1. 通过理论分析,系统研究三种自适应开关的原理和性能特点; 2. 通过广泛的数值模拟(包括一维标量方程、经验色散关系和多维欧拉方程的标准算例),获得自适应参数C的参考值并验证其合理性; 3. 通过广泛的数值模拟,系统评估三种自适应开关的综合表现(包括数值色散和耗散特性以及计算效率),并获得综合性能最佳的自适应开关. 结论:1. 对于高效WENOCU4格式而言,本研究证实了Cmin=40和Cmax=400是合理的自适应参数C的参考值,因此不应该直接采用WENOCU6的原始建议值. 2. 根据流场的连续性,采用自适应的参数C可以在保证数值稳定性的同时,有效地抑制WENOCU4的数值耗散. 3. 相比于其它开关,二进制型开关的综合表现最佳;其能够过滤激波感知器在光滑区域的一些误判,构造简单,且计算效率较高. 4. 本研究对三种自适应开关的评估具有一般性,因此易于拓展到其它高阶WENO格式的改进工作中. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Adams NA, Shariff K, 1996. A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. Journal of Computational Physics, 127(1):27-51. ![]() [2]Borges R, Carmona M, Costa B, et al., 2008. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of Computational Physics, 227(6):3191-3211. ![]() [3]Casper J, Carpenter MH, 1998. Computational considerations for the simulation of shock-induced sound. SIAM Journal on Scientific Computing, 19(3):813-828. ![]() [4]Fleischmann N, Adami S, Adams NA, 2019. Numerical symmetry-preserving techniques for low-dissipation shock-capturing schemes. Computers & Fluids, 189:94-107. ![]() [5]Henrick AK, Aslam TD, Powers JM, 2005. Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. Journal of Computational Physics, 207(2):542-567. ![]() [6]Honein AE, Moin P, 2004. Higher entropy conservation and numerical stability of compressible turbulence simulations. Journal of Computational Physics, 201(2):531-545. ![]() [7]Hu XY, Wang Q, Adams NA, 2010. An adaptive central-upwind weighted essentially non-oscillatory scheme. Journal of Computational Physics, 229(23):8952-8965. ![]() [8]Hu XY, Wang B, Adams NA, 2015. An efficient low-dissipation hybrid weighted essentially non-oscillatory scheme. Journal of Computational Physics, 301:415-424. ![]() [9]Jeong J, Hussain F, 1995. On the identification of a vortex. Journal of Fluid Mechanics, 285:69-94. ![]() [10]Jiang GS, Shu CW, 1996. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126(1):202-228. ![]() [11]Larsson J, Gustafsson B, 2008. Stability criteria for hybrid difference methods. Journal of Computational Physics, 227(5):2886-2898. ![]() [12]Lax PD, 1954. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Communications on Pure and Applied Mathematics, 7(1):159-193. ![]() [13]Lax PD, Liu XD, 1998. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM Journal on Scientific Computing, 19(2):319-340. ![]() [14]Lele SK, 1992. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 103(1):16-42. ![]() [15]Li XL, Fu DX, Ma YW, 2002. Direct numerical simulation of compressible isotropic turbulence. Science in China Series A: Mathematics, 45(11):1452-1460. ![]() [16]Liu XD, Osher S, Chan T, 1994. Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 115(1):200-212. ![]() [17]Martín MP, Taylor EM, Wu M, et al., 2006. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. Journal of Computational Physics, 220(1):270-289. ![]() [18]Pirozzoli S, 2002. Conservative hybrid compact-WENO schemes for shock-turbulence interaction. Journal of Computational Physics, 178(1):81-117. ![]() [19]Pirozzoli S, 2006. On the spectral properties of shock-capturing schemes. Journal of Computational Physics, 219(2):489-497. ![]() [20]Pirozzoli S, 2011. Numerical methods for high-speed flows. Annual Review of Fluid Mechanics, 43:163-194. ![]() [21]Sod GA, 1978. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics, 27(1):1-31. ![]() [22]Taylor EM, Wu MW, Martín MP, 2007. Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence. Journal of Computational Physics, 223(1):384-397. ![]() [23]Woodward P, Colella P, 1984. The numerical simulation of two-dimensional fluid flow with strong shocks. Journal of Computational Physics, 54(1):115-173. ![]() [24]Wu XS, Zhao YX, 2015. A high-resolution hybrid scheme for hyperbolic conservation laws. International Journal for Numerical Methods in Fluids, 78(3):162-187. ![]() [25]Young YN, Tufo H, Dubey A, et al., 2001. On the miscible Rayleigh-Taylor instability: two and three dimensions. Journal of Fluid Mechanics, 447:377-408. ![]() [26]Zhao GY, Sun MB, Mei Y, et al., 2019a. An efficient adaptive central-upwind WENO-CU6 numerical scheme with a new sensor. Journal of Scientific Computing, 81(2):649-670. ![]() [27]Zhao GY, Sun MB, Memmolo A, et al., 2019b. A general framework for the evaluation of shock-capturing schemes. Journal of Computational Physics, 376:924-936. ![]() [28]Zhao GY, Sun MB, Pirozzoli S, 2020. On shock sensors for hybrid compact/WENO schemes. Computers & Fluids, 199:104439. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>